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Abstract

We construct a dynamic general equilibrium model with occupation mobility, human cap-

ital accumulation and endogenous assignment of workers to tasks to quantitatively assess the

aggregate impact of automation and other task-biased technological innovations. We extend

recent quantitative general equilibrium Roy models to a setting with dynamic occupational

choices and human capital accumulation. We provide a set of conditions for the problem of

workers to be written in recursive form and provide a sharp characterization for the optimal

mobility of individual workers and for the aggregate supply of skills across occupations. We

craft our dynamic Roy model in a production setting where multiple tasks within occupations

are assigned to workers or machines. We solve for the balanced-growth path and characterize

the aggregate transitional dynamics ensuing task-biased technological innovations. In our

quantitative analysis of the impact of task-biased innovations in the U.S. since 1980, we find

that they account for an increased aggregate output in the order of 75% and for a much

higher dispersion in earnings. If the U.S. economy had higher barriers to mobility, it would

have experienced less job polarization but substantially higher inequality and lower output

as occupation mobility has provided an “escape” for the losers from automation.

Keywords: Dynamic Roy models, automation, human capital, aggregation.
JEL Classification: E24, E25, J23, J24, J62, O33.

∗First draft: February 2019. Previously circulated as: Occupational Choice and the Dynamics of Human
Capital, Inequality and Growth. We thank our discussants, Natalia Kovrijnykh and Todd Schoellman for detailed
comments and suggestions. In addition, we would like to thank Ariel Burstein, Paco Buera, Jonathan Eaton,
Gueorgui Kambourov, Loukas Karabarbounis, Philipp Kircher, Rody Manuelli, Guido Menzio, Giuseppe Moscarini,
Pascual Restrepo, Paulina Restrepo, Andres Rodriguez-Clare, Esteban Rossi-Hansberg, Kim Ruhl, Felipe Saffie,
Juan Sanchez, Edouard Schaal, Yongs Shin, Gustavo Ventura, and seminar and conference participants for helpful
comments. Asha Bharadwaj and Qiuhan Sun provided excellent research assistance. All views and opinions
expressed here are the authors’ and do not necessarily reflect those of the Federal Reserve Bank of St. Louis or the
Federal Reserve System. †Federal Reserve Bank of St. Louis. §Washington University in St. Louis.



1 Introduction

While expanding aggregate production, technological and organizational advances are usually bi-

ased against some occupations and, often, against many workers. For instance, in recent years

automation and routinization have received enormous attention because of the displacement of

workers from traditional jobs, the polarization of earnings, and a widening inequality in overall

income distribution.1 These “task-biased” technological innovations replace workers for machines

in the performance of production tasks, and their aggregate impact depends on how easy or dif-

ficult is to substitute factors in the production of different tasks (as emphasized by Autor et al.

(2003)) and also on how easy or difficult it is for workers to switch tasks and labor markets (as

emphasized by Acemoglu and Autor (2011)). Yet, the ultimate impacts on aggregate output,

income distribution and welfare are also determined by the dynamic responses in aggregate in-

vestments in equipment, the reallocation of existent and new workers and their human capital,

and the equilibrium prices of skills across the different labor market occupations.

In this paper, we use a dynamic general equilibrium model with occupation mobility and

endogenous assignment of workers to tasks to quantitatively assess the impact of automation and

other task-biased technological innovations. We extend recent quantitative general equilibrium

Roy models to a setting with dynamic occupational choices and human capital accumulation.

Analytically and quantitatively, we show that these are crucial aspects for the determination of a

country’s earnings distribution and level of aggregate output, as well as the responses to economy-

wide technological advances. In our model, workers have long stochastic lifetimes, are forward

looking and can switch occupations in any period during their participation in labor markets.

Workers’ occupation mobility choices maximize their expected lifetime utility, and, along with

idiosyncratic occupation-specific productivity shocks and the costs of switching occupations, drive

their accumulation of human capital over the life cycle. With respect to the demand for labor, the

production of final goods is the result of assigning different types of workers and machines to tasks

across multiple occupations. We show that the equilibrium assignment of workers and machines

to tasks generates a (nested) CES aggregate production function that exhibits cross-occupation

differences in productivity levels and the complementarity or substitutability between machines

and workers.

We quantitatively assess the impact of automation and other task-biased technological inno-

vations on the welfare of workers on different occupations and on the overall earnings inequality

for the U.S. economy from 1980 to the present. Mapping our model to the moments observed

in the 1970s for the U.S. economy, we then account for the subsequent changes observed in the

employment shares across occupations and the increase in earnings inequality that arise from task

biased technological advances. An important change observed in U.S. labor markets in the past

few decades is the polarization of skills in the labor market, i.e., the decline of employment in

1See Acemoglu and Restrepo (2019); Autor and Dorn (2013); Autor, Katz, and Kearney (2006); Autor, Levy,
and Murnane (2003); Goos and Manning (2007); Goos, Manning, and Salomons (2014).
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middle-skill occupations, like manufacturing and production occupations, and the growth of em-

ployment in both high and low-skill occupations, such as managers and professional occupations

on one end, and assisting or caring for others on the other.

Using our model we show how task-biased technical improvements can jointly explain the

increase in the capital share of income, labor market polarization, earnings inequality and occu-

pational mobility in U.S. labor markets. In our quantitative analysis of the impact of task-biased

innovations in the U.S. since 1980, we find that they account for an increased aggregate output

in the order of 75% and with much higher dispersion in earnings. We also argue that if the U.S.

economy had larger barriers to mobility, it would have experienced less job polarization but would

have substantially increased the observed levels of inequality as occupation mobility provides a

“escape from the losses from automation. Finally, the model can easily explain the fall in the labor

income share: Instead of falling by 9%, the differences in the elasticity of substitution between

machines and workers would lead to a fall in this share in the order of 14%.

Our dynamic model highlights the long-lasting impact of task-biased technological changes.

Indeed, in our dynamic setting, once-and-for-all changes in automation or other technological

changes can lead to sustained growth effects in the earnings of workers over their life-cycle and

very long transitional dynamics for the aggregate economy. We emphasize that the welfare and

inequality implications for technological changes can be vastly richer than those obtained in other

settings as they originate not only from changes in skill prices in each period but also from changes

in the equilibrium growth rate of earnings. On the one hand, the positive impact on some workers

is not only due to higher level of earnings but also from a faster growth. On the other hand, some

workers can be worse-off due to lower levels of earnings and the human capital losses associated

with changing occupations at a higher rate. These are aspects that are naturally incorporated in

our dynamic setting and are absent from static occupation choice models.

As we further discuss in Section 3, it is extremely challenging to solve for a dynamic general

equilibrium Roy model with a non-trivial number of occupations and human capital that endoge-

nously evolves with the workers’ occupational choices.2 In this vein, the paper has a number of

expansive methodological contributions. First, we extend the static models used in recent gen-

eral equilibrium quantitative papers to a recursive setting and fully characterize the solution for

the problem of a worker with labor market opportunity shocks that every period may affect his

comparative advantage across occupations. We use standard dynamic preferences with constant

relative risk-aversion (CRRA) preferences, bridging recent quantitative assignment Roy models

(discussed below) with the standard dynamic household model for households used in macroe-

conomics. Interestingly, by combining CRRA preferences and Frechet distributed labor market

2First, the problem of the worker depends on a vector that denotes the worker’s skills in each occupation.
With a medium to large number of occupations, this is a high-dimensional object that evolves over time, rendering
the recursive problem of the worker intractable. Second, solving for general equilibrium requires an aggregation
of individual labor supplies comprised of heterogeneous skill levels for all occupations and, in a non-stationary
environment, requires the characterization of the dynamic evolution of the aggregate labor supplies in all these
markets.

3



opportunities, we show that the resulting distribution for the continuation values in the Bellman

equation of workers follows one of the three extreme value distributions, Frechet, Gumbel, or

Weibull, depending on whether the coefficient of relative risk aversion is lower than, equal to,

or higher than 1, respectively. In all these cases, conditions for existence and uniqueness are

provided and the simple recursion formulas that come out from the Bellman equation make for

trivial computations. In doing so, the dynamic problem of workers generates occupation mobility

probabilities, not just unconditional occupation choices.

Second, we fully characterize the limiting behavior for the employment and human capital of

workers as implied by their dynamic occupation choices. From the worker’s individual problems,

we derive the law of motion for the employment shares of workers across occupations. Associated

with any positive vector of skill prices, we show that there exists a unique invariant distribution

of workers. For aggregate human capital, we also show that a simple aggregation property holds,

which allows us to write down the transition matrix for the vector of aggregate human capital

across occupations. We show that the human capital for each of the cohorts inside a country

does not settle down to an invariant state. Instead, each cohort’s average grows over time. Using

the fact that the dominant eigenvalue of the aggregate human capital transition matrix is always

unique, positive, and real, we derive simple formulas for the aggregate human capital of the country

as a whole. Thus, our dynamic Roy model explicitly uncovers the simple mechanics by which the

life-cycle gradient of earnings of workers is determined by occupation mobility and how it affects

the human capital of a country and its long run income inequality within and across cohorts of

workers.

Third, by embedding our dynamic Roy model in a fairly rich general equilibrium environment,

we develop a framework in which different tasks across occupations are endogenously allocated

to workers or machines. In the model, there are two forms of physical capital. The first is the

traditional one in neoclassical models, and hence complementary to all workers. The second

capital is in the form of ‘machines’ which compete with –and substitute for– workers. In our

setting, output is produced by performing a large set of tasks which are assigned to either workers

or machines depending on their relative productivity and relative costs. The productivities of

workers relative to their market price and how they compare with those of machines determine the

set of tasks they perform within each occupation. From the equilibrium tasks-workers assignment

we show that a transparent and tractable nested CES aggregate production function emerges.

Importantly, the output labor-share of the economy is an endogenous function of the wages of

workers in different occupations, the rental rates of capital, and the labor and machine productivity

terms. Fourth, we show the existence of a competitive-equilibrium balanced-growth path for the

production economy. Fifth, we extend recent dynamic-hat-algebra methods to models with general

CRRA preferences and with human capital accumulation. The advantage of this approach is to

substantially reduce the set of parameters needed to be calibrated for the quantitative application

of the model. Seventh, we discuss multiple relevant extensions of our baseline model.
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The end of this section relates our paper to existing literature. Section 3 briefly overviews

the empirical evidence on the impact of task-biased technological innovations on the U.S. labor

market. In particular, we highlight the asymmetric impact across workers in different occupations.

Section 4 studies the individual optimization problem of a worker that chooses occupations to

maximize lifetime utility for a given vector of skill prices or unitary wages per occupation. For

given wages, we show the existence of an invariant distribution of workers and human capital

across occupations. We also introduce the same demographic structure and derive the occupation

choices of new workers. In the last part of Section 4, we provide numerical examples that illustrate

the key mechanisms in the model and the implications of technological changes that are biased

against routine occupations. Section 5 describes the production economy, solves for the optimal

assignment of tasks to workers or machines, derive the aggregate production function and the

general equilibrium conditions. That section also describes how to extend the dynamic hat-

algebra methods of Caliendo, Dvorkin, and Parro (2019) to our environment with general CRRA

preferences and endogenous human capital accumulation. Section 6 contains our quantitative

assessment of the impact of task-biased technological innovations and their impact on U.S. labor

markets. Section 7 concludes. A number of appendices at the end include the proofs (Appendix

A), the dynamic hat algebra (Appendix B), formulae for welfare (Appendix C) and the extension

of the model to ex-ante heterogeneous workers (Appendix D.)

Related Literature

Our work is related to a growing but already extensive literature in labor economics and macroeco-

nomics that argues that recent changes in technology have had an asymmetric impact on workers,

leading to job polarization and increased earnings inequality. In the careful summary of this liter-

ature by Acemoglu and Autor (2011), the authors state that “recent technological developments

have enabled information and communication technologies to either directly perform or permit

the off-shoring of a subset of the core job tasks previously performed by middle-skill workers, thus

causing a substantial change in the returns to certain types of skills and a measurable shift in the

assignment of skills to tasks.” Using the cross-section of U.S. commuting zones, Autor and Dorn

(2013) also find strong empirical support for the asymmetric effects of computerization across

occupations and skills. Our paper follows on these authors and uses a task-based framework for

analyzing the effect of new technologies on the labor market and their impact on the distribution

of earnings. In our model, a worker’s human capital evolves endogenously as a result of past

labor market decisions. We provide analytic and quantitative results concerning the impact of

task biased technologies from the 1970s onward on U.S. workers and their occupational decisions,

human capital accumulation, and earnings inequality.

Krusell, Ohanian, Rios-Rull, and Violante (2000) study how skill-biased technical change affect

the skill premium and earnings inequality. They argue that the sharp reduction in the price

of equipment jointly with capital-skill complementarity differences can account for a significant
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fraction of the increase in inequality between education groups. In their paper, labor markets

are segmented by education, and workers cannot switch across those markets, that is, the type

of jobs available for one group of workers is not available for other workers. Our model does

not have such a segmentation, as workers can choose between different occupations, trading-off

between their own comparative advantage and macroeconomic conditions in these markets. Also,

in our model workers accumulate human capital, which they can reallocate across the different

occupations. While at the cost of human capital depreciation, occupation mobility provides an

“escape” from the adverse effects that technological innovations may have for the earnings in some

occupations.

Kambourov and Manovskii (2009) argue that wage inequality and occupational mobility are

intimately related. They use a general equilibrium model with occupation-specific human capital

and compare economies with different levels of occupational mobility. In our model, workers

self-select into occupations according to their implied expected lifetime values, and comparative

advantage and relative production costs determine skill prices and workers’ allocation. Then, we

compute the transition between balanced-growth paths (BGP) from an economy initially as of

the late 1970s to the current time and analyze the effects of the technological innovation for the

behavior of inequality and growth.

Our paper contributes to the growing quantitative literature that has successfully applied

static Roy models with Frechet distributed shocks to diverse topics, and bridges this literature

with standard dynamic quantitative macro models.3 Some of the prominent examples of these

papers include the following: Lagakos and Waugh (2013) show that the selection of workers can

explain why productivity differences across countries are twice as large in agriculture than outside

agriculture. Hsieh, Hurst, Jones, and Klenow (2019) show how discrimination frictions in the

labor market across workers with different race and gender have amounted to substantial aggregate

misallocation and productivity costs for the U.S. economy as a whole. Galle, Rodŕıguez-Clare,

and Yi (2017) finds that international trade of goods with China increases average welfare, but

some groups of workers experience welfare losses as high as five times the average gain. Burstein,

Morales, and Vogel (2018) find that the combination of computerization and shifts in occupation

demand account for roughly 80% of the rise in the skill premium, with computerization alone

accounting for roughly 60%. All in all, our simple recursive methods can be applied to extend

this type of models to dynamic contexts, explicitly considering the lifetime implications of staying

in a low paying occupation or switching to a better labor market at the expense of a temporary

mismatch of their human capital. To be sure, it is straightforward to extend our model to capture

ex-ante heterogeneity and age-dependent choices, both of which are salient aspects in the literature

on human capital accumulation.

Our paper closely relates to Acemoglu and Restrepo (2018) and Acemoglu and Restrepo (2019)

who study how machines and industrial robots affect different workers and labor markets. They

3Recent quantitative Roy models build on the original analytic insights of Eaton and Kortum (2002).
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argue that this type of technological advance may explain part of the decline in the labor share

highlighted in Karabarbounis and Neiman (2013). We extend the assignment model of tasks to

workers and machines of Acemoglu and Restrepo (2018) to different factors of production, and in

particular different types of workers. We show how our production at the level of each task can be

aggregated and derive the equilibrium aggregate production function, which we show is a nested-

CES with differences in the elasticity of substitution between capital and labor across different

occupations. From here, it is straightforward to characterize the expression for the output labor

share, which depends on the equilibrium price of capital, and hence, sensitive to technological

innovations that displace labor for capital across some of the tasks. Martinez (2019) obtains a

similar aggregation result in production under different assumptions for an economy with cross-

firm heterogeneity in automation.

Lee and Wolpin (2006) consider a dynamic equilibrium Roy model, with two production sectors

and three labor market skills. Aside from dynamic occupation choices, workers also accumulate

human capital. They use their model to explain why the relative constancy of relative wages

in face of a substantial expansion of the service sector does not imply that occupation mobility

costs are negligible. Indeed, in their counterfactual exercises, they find large income gains if these

mobility costs were zero. Similar to them, we find large counterfactual differences arising from

occupation mobility costs.

We have abstracted from the rich demographic structure in Lee and Wolpin (2006). Instead, we

provide a formulation of the dynamic equilibrium Roy model that leads to a much more tractable

aggregation, which greatly facilitates using the model for characterizing the aggregate responses to

technology changes, particularly with a large number of occupations. Moreover, we discuss below

how we can extend our model to allow for some of the aspects in Lee and Wolpin (2006) and

much of the literature on human capital accumulation. Similarly, we discuss how we can extend

our model to capture the aggregate equilibrium responses to demographic changes and gender

differences, as emphasized by Cortes, Nekarda, Jaimovich, and Siu (2016), and workers’ skill and

occupational mismatches as emphasized by Guvenen, Kuruscu, Tanaka, and Wiczer (2019).

More recently, Adao, Beraja, and Pandalai-Nayar (2018) also develop a Roy model in which,

but they restrict workers to choose their skills before entering labor markets. Once they entered

labor markets, their predetermined skills lead workers of different cohorts to choose among two

occupations in every period. Thus, workers of different cohorts have different skills and thus

select into occupations differently despite facing the same skills prices. Then, they use the model

to understand how economies adjust to an asymmetric technological advance, the speed of the

adjustment and the impact on income inequality. Instead, our paper emphasizes the evolution of a

worker’s human capital after the worker has entered the labor markets and how future valuations

and not only current payouts determine occupation switches.

Our model highlights how the workers’ reallocation across occupations impacts the rate of

growth of their earnings over their life-cycle. Recently, Lagakos, Moll, Porzio, Qian, and Schoell-
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man (2018) have documented substantial cross-country differences in the experience-wage profiles,

which are on average twice as steep in rich countries as in poor countries. Our analytical aggre-

gation results allow us to transparently examine how technological differences that impact the

equilibrium price of skills ultimately lead to differences in the life-cycle wage profiles. We find

that at the aggregate level, those differences can imply large permanent differences in aggregate

human capital of countries, their aggregate income and inequality. Moreover, we show that once-

and-for-all task biased technological innovations may have long lasting effects on the growth rate

of the economy.

We use our framework to assess the general equilibrium response of task biased technical

change. To this end we use a relatively large number of occupations in our analysis, noting that we

are limited by adequate data, not by computing costs. Since the equilibrium aggregate production

is a nested-CES with differences in the elasticity of substitution between capital and labor across

different occupations, then investment specific technological change Greenwood, Hercowitz, and

Krusell (1997) will be non-neutral. Indeed, the resulting response in the model mimics a routine-

biased technological as proposed by Autor et al. (2003),Goos and Manning (2007) and Goos et

al. (2014), among others. We use our model to quantitatively assess the impact on polarization,

income inequality and aggregate human capital and output as workers switch from low-growth

occupations to faster growth ones.

To perform these experiments, we apply the recent dynamic-hat-algebra methods of Caliendo,

Dvorkin, and Parro (2019) which hugely reduce the number of parameters needed to calibrate or

estimate the model and perform quantitative counterfactual experiments. We extend the work

of these authors to allow for more general preferences (CRRA instead of log-preferences) and

human capital accumulation. Moreover, we show existence (and uniqueness in simple cases) of

the competitive general-equilibrium balanced-growth path, describing how the response of human

capital accumulation drives the transitional and long-run dynamics after an innovation disrupts

the initial equilibrium.

2 Evidence on Task-biased Innovations and Occupations

An extensive literature, partially reviewed above, has emphasized technological advances and the

ensuing job polarization and inequality. In this section, we focus on the empirical evidence for the

asymmetric effects across different types of occupations, which, following Foote and Ryan (2015),

we group into four broad categories: (1) non-routine cognitive, (2) non-routine manual, (3) routine

cognitive, and (4) routine manual.4 Figure 1 shows the cumulative change in employment over

the four broad occupational groups between 1980 and 2017. The blue line in the figure (with its

scale in the right vertical axis) indicates the average earnings of workers in the four occupations in

4In particular, managerial and professional jobs are classified as “non-routine cognitive,” service jobs are classified
as“non-routine manual,” sales and office jobs are classified as “routine cognitive.” Finally, construction, repair,
production, and transportation jobs are all grouped as “routine manual.”
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1980. Clearly, during the last four decades, U.S. employment has moved towards the non-routine

occupations, which are on the polar extremes of the average earnings distribution, and away from

routine occupations, which tend to be in the middle part of the earnings distribution.

Figure 1: Job polarization and earnings 1980-2017
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Specifically, Figure 1 shows that the total employment in non-routine cognitive occupations

more than doubled over the last four decades. Not as dramatic but still well above total employ-

ment growth, employment in non-routine manual occupations also increased substantially, around

65%. On the contrary, the employment in routine-cognitive and routine-manual occupations, in-

creased much less, both well below 20%. As shares of the total labor, employment in routine

occupations has fallen, while employment in non-routine occupations has increased. Under many

circumstances, the movement of employment towards the extremes and away from the middle of

the pay scale can lead to higher overall earnings inequality.

To explain the shift towards non-routine occupations, recent works have emphasized that

technological advances and new forms of capital equipment have displaced workers in routine

occupations. This is because many tasks in these occupations tend to be repetitive and easier to

codify using a well-defined set of instructions. In turn, these tasks can be easily automatized and

performed by machines or software, thus displacing labor from these occupations.

Our empirical analysis adapts the work of Autor and Dorn (2013) and Acemoglu and Restrepo

(2019), placing the focus on how technological innovations have impacted different types of oc-

cupations. The main idea is to use differences across local labor markets in their exposure to

the increase in usage of computers and industrial robots. To the extent that these forms of cap-

ital displace workers from some jobs, and, possibly, increase labor demand for others, differences

in the characteristics of occupational employment across commuting zones will lead to an above
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(or below) average exposure in automation and routinization, and an above (or below) average

employment changes.

We estimate an empirical equation of the form:

∆

(
Eocc j
i

Popi

)
= α + β∆PCi + δ∆APRi + γ Xi + εi, (1)

where the dependent variable on the left is the change between 1990 to 2007 in the employment

of occupational group j, relative to population, for commuting zone i, and the variables ∆PCi

and ∆APRi are the changes in the exposure to computers (change in PCs per worker) and robots

(adjusted penetration of robots) for commuting zone i, respectively. Xi are controls for commuting

zones’ characteristics. 5

We construct the measures for the changes in the exposure to computers and industrial robots

at the commuting zone level as follows. For computers, we use the measure of exposure at the

commuting zone level from Autor and Dorn (2013).6 This variable counts the number of personal

computers per employee at the firm level constructed by Doms and Lewis (2006), which Autor

and Dorn (2013) aggregate to the commuting zone level. For industrial robots, we construct the

measures of the change in exposure to robots following closely Acemoglu and Restrepo (2019). We

use information from the International Federation of Robotics (IFR), on the stock of robots used

in different countries around the world and in different industries by year. In particular, the IFR

has data for thirteen industries within manufacturing and for six broad sectors outside of manu-

facturing. Within manufacturing, we have data on apparel and textiles; automotive; basic metals;

clay, glass and minerals; electronics; food and beverages; industrial machinery; metal products;

paper and publishing; plastics, chemicals and pharmaceuticals; shipbuilding and aerospace; wood

and furniture; and a miscellaneous manufacturing category. Outside of manufacturing, we have

data for agriculture, construction, mining, research and education, services, and utilities. Detailed

industry-level data for the U.S. is available starting in 2004, which is why our measure for the

exposure to robots uses the change in the stock of robots between 2004 and 2007. As in Acemoglu

and Restrepo (2019), we re-scale our measure of exposure to robots to match the length of the

time period of analysis (1993-2007).7

Using information on industry employment for all the United States and for each commuting

zone in 1990, together with the stock of robots by industry, we construct the adjusted penetration

5Our controls Xi include census division dummies for the commuting zones. All the regressions are weighted by
commuting zone population in 1990 and, when necessary, we rescale all variables proportionately to get a 14-year
equivalent change (from 1993 to 2007).

6This variable was first computed by Doms and Lewis (2006). We take this variable from David Dorn’s website:
http://www.ddorn.net/data.htm.

7We ended our analysis in 2007 to prevent the effects of the Great Recession from confounding our results.
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of robots as follows,8

∆APRi =
K∑
k=1

Ek
i

Ei

(
∆Mk

Ek
− gkM

k

Ek

)
,

where Ek
i is the employment in industry k of commuting zone i in 1990, Ei is total employment

of the commuting zone in 1990, gk is the growth rate of output of industry k and Mk is the stock

of robots in industry k.

We construct the dependent variable in equation (1) using data from public use microdata

sample of the American Census of 1990 and the American Community Survey (ACS). Our sample

is restricted to employed individuals between the ages of 25 and 65 that work for a wage or salary

(not self-employed) in the private sector. In this way, our sample selection criteria follow closely

Acemoglu and Restrepo (2019). The data contains information on the occupation of individuals,

which we then aggregate into the four main occupational groups. Because of the potential en-

dogeneity of our regressors, we estimate equation (1) via two-stage least-squares, instrumenting

the variables ∆PCi and ∆APRi as follows: First, as Autor and Dorn (2013), we construct an

instrument for the change in PCs per worker using industry and occupation information twenty

years before the start of the period of analysis. Let Eki,1970 equal the employment share of in-

dustry k ∈ 1, 2, ...K in commuting zone i in 1970, and let Rk,i,1970 equal the routine occupation

share among workers in industry k in 1970 in all commuting zones except commuting zone i. The

product of these two measures provides a predicted value for the routine employment share in

each commuting zone, which depends only on the local industry mix in 1970 and the occupational

structure of industries nationally in 1970,

˜RSHi =
K∑
k=1

Ek,i,1970 ∗Rk,−i,1970. (2)

Second, we follow Acemoglu and Restrepo (2019) and construct an instrument for the APR in the

United States using the changes in the stock of industrial robots in several European countries

by industry and using a similar formula as before, but replacing Mk by the stock of robots in

European countries in industry k.9

Table 1 presents our empirical findings. The data clearly support the hypothesis that the

introduction of robots and computers has had diametrically different impacts across occupations.

In particular, as robots and computers take over tasks previously performed by workers in routine

occupations, the demand for those workers is reduced, while the demand for workers in non-

cognitive occupations seems to increase.

First, consider non-routine cognitive occupations. The estimates in the upper-left panel of

Table 1 indicates that there is statistically significant evidence that a higher exposure to computers

8 We use public microdata on employment by industry and commuting zone from the American Census of 1990.
9The change in the stock of robots is between 1993 and 2007, and the European countries we use are Denmark,

Finland and France.
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leads to a higher employment rate in those occupations. This suggests that the productivity of

managers and professionals may have increased by the enhanced provision of routine tasks from

computers. The positive effect is robust to including robots in the regression. Robots by themselves

do not seem to have significant effects on cognitive non-routine occupations.

Table 1: The effects of the increased use of robots and computers on different occupations

Non-Routine Cognitive Non-Routine Manual
(1) (2) (3) (1) (2) (3)

Change in PC’s 1.163** 1.142* 0.596 0.585
per worker (2.59) (2.55) (1.69) (1.71)

Adjusted Exposure -0.087 -0.082 -0.047 -0.044
to Robots (-1.61) (-1.55) (-0.66) (-0.66)

observations 660 722 660 660 722 660
Adjusted R2 0.172 0.164 0.175 0.174 0.170 0.176

Routine Cognitive Routine Manual
(1) (2) (3) (1) (2) (3)

Change in PC’s -3.158*** -3.132*** 1.471* 1.314*
per worker (-6.22) (-6.25) (2.28) (2.19)

Adjusted Exposure 0.118 0.105 -0.622*** -0.616***
to Robots (0.93) (1.01) (-6.04) (-6.45)

observations 660 722 660 660 722 660
Adjusted R2 0.170 0.095 0.174 0.283 0.361 0.364

Note: regressions use robust standard errors. t-statistics in parenthesis.

Second, consider the impact on the employment in non-routine manual occupations. The re-

sults are reported in the upper-right panel. For those occupations, neither computer nor robots

have statistically significant impacts. These results suggest that neither of these forms of techno-

logical innovations substitute or complement the workers in non-routine manual occupations, i.e.,

services, or that, at least at these levels of aggregations, the effects cancel out.

Third, consider the employment in routine manual occupations, reported in the lower-right

panel. For these occupations, computers and robots appear to have opposite effects. On the one

hand, there is significant evidence that exposure to robots reduces the employment rate in those

occupations. On the contrary, although only marginally significant, the exposure to computers

seems to enhance the employment in these occupations.

Finally, as shown in the lower-left panel, there is strong evidence that computers reduce the

employment rate in routine cognitive occupations. The effects are statistically significant, and
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robust to the including or not robots, which are not significant. Most interestingly, the magnitude

of the effect of computer is the highest across the four groups of occupations.

Overall, these simple results indicate that the introduction of new forms of capital –and the

technological innovations embedded in them– have strong and asymmetric impacts across the dif-

ferent occupations. The overarching message is that, on the whole, robots and computers are task-

biased innovations that displace routine occupations and possibly favor non-routine occupations.

The results suggest an intuitive dichotomy, whereby computers disrupt cognitive occupations and

while robots disrupt manual occupations, but both disruptions in the same direction, displacing

routine workers and favoring non-routine ones.

The aggregate and individual consequences of task-biased technological innovations crucially

depend on how mobile are workers across occupations, and what is the impact of occupation

transitions on the human capital of workers. These two margins not only determine the extent

of job polarization and earnings inequality, but also, at the macro level, the impact on aggregate

output, factor output shares and welfare, and at the individual level, occupational choices and

earning dynamics. With those issues in mind, we now construct a quantitative model for the

reallocation of workers and their human capital across occupations and use it to examine the

aggregate consequences of task-biased technological innovations on employment and factor income

shares, aggregate income, inequality and welfare.

3 A Canonical Worker’s Problem

We consider an infinite horizon maximization problem for a worker with standard preferences. At

any time t = 0, 1, 2, ..., the utility of the worker is given by

Ut =
(ct)

1−γ

1− γ
+ E

[
∞∑
s=1

βs
(ct+s)

1−γ

1− γ

]
,

where 0 < β < 1 is a discount factor (which accounts for a constant survival probability) and

γ ≥ 0 is the coefficient of relative risk aversion (CRRA.) For γ = 1, we interpret the flow utility

to be logarithmic, i.e. ln ct.

3.1 Dynamic Roy Models: Challenges

The worker starts each period t = 1, 2, ... attached to one of j = 1, ..., J occupations, carrying over

from the previous period a vector of human capital x of size J which describes the efficiency units

of labor of this worker in each of the J occupations. To set up our framework, we first specify

the general dynamic problem of the worker given a time-invariant vector of strictly positive (and

finite) wages per unit of human capital w =
[
w1,w2,...w`...,wJ

]
. Therefore, the worker’s earnings

for the period given her current occupation j are wjxjt .
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In our model, workers are dynamic optimizers, with their human capital returns as their sole

source of income in every period. The worker’s consumption in each period is simply the current

earnings wjxjt . For simplicity, we assume that the evolution of human capital depends on worker’s

occupational choices, the current level of human capital in all occupations and some random

idiosyncratic forces.10 This minimal set of assumptions allows us to write the problem recursively

in the following way,

V (j, x1, x2, . . . , xJ) =
(wj xj)

1−γ

1− γ
+ β max

`

{
E

[
V (`, x′1, x

′
2, . . . , x

′
J)

∣∣∣∣ j, x1, x2, . . . , xJ

]}
This dynamic Roy problem is quite general. It only assumes a first order Markovian dependence

of human capital. However, solving for a dynamic general equilibrium model with this level of

generality and for a non-trivial number of occupations is extremely challenging. On the one hand,

the problem of the worker has the whole vector of human capital as a state variable. With a

medium to large number of occupations, this is a high-dimensional object, rendering the problem

intractable. On the other hand, solving for the general equilibrium requires an aggregation of

individual labor supplies for all markets, which, in a non-stationary environment, requires also the

characterization of the dynamic evolution of the aggregate labor supplies in all occupations.

3.2 Main assumptions

Additional assumptions are needed for a tractable dynamic problem that can handle a large

number of occupations and make the model suitable for aggregation and general equilibrium. Our

assumptions closely connect to recent works on static Roy models with Frechet distributed shocks,

extending this literature to a dynamic general equilibrium context.11

The two key aspects in a worker’s vector of skills, x ∈ RJ , are his absolute advantage and the

comparative advantage across occupations. The first one is given by the magnitude of the vector,

‖x‖, and defines a common factor on how productive the worker is across the different occupations.

The second aspect is determined by the direction of the vector, x(j)/x(k), 1 ≤ j 6= k ≤ J , and

generally determines his best occupation choices.

The first key assumption in our analysis is the homogeneity in the utility function of workers

and in the law of motion of their human capital. In particular, we assume standard constant

relative risk aversion (CRRA) preferences and a linear law of motion for the absolute level of skills

of workers.12 Under these assumptions, we can factor out the absolute advantage ‖xt‖ of workers

10These assumptions are common in the literature, see for example Lee and Wolpin (2006).
11The literature on static general equilibrium Roy models with Frechet distributed shocks has recently been

applied to a large number of interesting questions. See for example Burstein et al. (2018); Galle et al. (2017); Hsieh
et al. (2019); Lagakos and Waugh (2013).

12Log-preferences are also allowed as a special case. See Alvarez and Stokey (1998) for a detailed analysis of
dynamic programming problems with homogeneous functions.
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and their comparative advantage fully determines the optimal occupation choices for workers.

The second key assumption is a simple Markov structure for the comparative advantage of

workers. In particular, conditional on worker characteristics and, possibly other pre-determined

variables, the current occupation and idiosyncratic random labor market opportunities determine

the comparative advantage of workers across occupations. In our model, a matrix τ determines the

transferability of skills from each occupation to all others. The diagonal entries of such a matrix

govern the average growth in skills in each occupation while the off-diagonal terms capture the

different depreciation rates associated with occupation mobility. Moreover, a matrix χ determines

non-pecuniary costs or benefits of moving across occupations. In addition to these pecuniary and

non-pecuniary costs, in each period, workers realize random labor market opportunities across

all occupations. Thus, in each period, the worker’s human capital for the next period, in each

occupation, is governed by the current occupation, the transferability matrix τ , the absolute level

of skills ‖xt‖ and a random component for each of the occupations. The absolute level of skills

‖xt‖ of workers will grow over time, encoding the worker’s entire history of labor market choices

and opportunities.

Our assumptions lead to a recursive formulation in which workers optimally self-select across

occupations, on the basis of the random opportunities, the human capital transferability and

non-pecuniary costs of moving, τ and χ, and endogenously determined valuations of occupations.

These valuations solve a fixed point problem that incorporates not only the current prices of

skills, but also the future occupation alternatives for workers. At the individual level, the model

generates a simple probabilistic model, in which job transition probabilities capture persistence in

occupation choices and internalize self-selection and the current and future returns of jobs. At the

aggregate level, the model is very tractable for general equilibrium, since it leads to very simple

aggregation of the workers and human capital across the different occupations.

3.3 Individual problem

The worker starts each period t = 1, 2, ... attached to one of j = 1, ..., J occupations, carrying over

from the previous period an absolute level of human capital h > 0. Available for the next period,

the worker realizes a vector εt =
[
ε1t , ε

2
t , ...ε

`
t...,ε

J
t

]
∈ RJ

+ of labor market opportunities. Each entry

in the vector corresponds to the labor market opportunity in the respective occupation. On the

basis of these opportunities, the worker chooses to either stay in the current occupation j or to

move to an alternative occupation `.

Switching occupations entails costs (or returns) which we specify as follows: A J × J human

capital transferability matrix, with strictly positive entries, τj`, determines the fraction of the

human capital h that can be transferred from the current occupation j to a new occupation `. On

average, there is depreciation if τj` < 1 or positive accumulation if τj` > 1. The diagonal terms,

τjj, may be higher than one, capturing learning-by-doing, i.e. the accumulated experience capital

of a worker as he spends more time in an occupation j. These diagonal terms τjj may vary by
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occupation j. The off-diagonal terms τj` may be less than one to capture a potential mismatch

between the human capital acquired in one occupation and the productivity of the worker in a

different occupation. Still, some of the off-diagonal terms could be greater than one, capturing skill

transferability and cross-occupation training or upgrading. In our specification, these occupation-

switching costs have a permanent impact on the human capital of the worker for all future periods

and for all future occupation choices. In addition, a J×J utility cost matrix, with strictly positive

entries, χj`, captures the non-pecuniary costs (or benefits) of switching from current occupation

j to occupation `. These costs shape the occupational decision, but have no direct impact on

current or future earnings. We assume these non-pecuniary costs are proportional to the expected

lifetime utility of the destination occupation at the time of making the decision.

The human capital of the worker evolves according to the labor market opportunities εt and

the occupation choice of the worker. Given a level of human capital, h, a current occupation j,

and a vector εt ∈ RJ
+ of labor market opportunities, the vector

ht τj,· � εt ∈ RJ
+,

describes how many efficient units of labor services, or effective human capital, the worker can

provide for each of the alternative occupations ` = 1, ..., J . Here the operator � denotes an

element-by-element multiplication (Hadamard product). After choosing which occupation to take,

the scale of the human capital level for the worker for the next period would be

ht+1 = htτjt,`t+1 ε`,t, (3)

where jt and `t+1 indicate, respectively, the occupations at period t and t+ 1.13 It is important to

highlight that the role of variable h this model. On the one hand, it is an absolute level of general

human capital (or an absolute advantage across occupations). On the other, all the past history

of the worker in terms of different occupation choices and realization of idiosyncratic shocks ε, is

summarized in a single value for h. In this way we sacrifice some generality in favor of tractability.

We now set up the problem of the worker recursively, and provide additional structure to

derive a sharp characterization of the optimal choices. Denote by V (j, h, ε) the expected life-time

discounted utility of the worker. The Bellman Equation (BE) that defines this value function is,

V (j, h, ε) =
(wj h εj)

1−γ

1− γ
+ βmax

`
{χj,`Eε′V [`, h′, ε′]} , (4)

where Eε′ [·] is the expectation over the next period’s vector of job market opportunities and h′ is

given by equation (3.)

To characterize this BE, we first show that it can be factorized, i.e. its value can be decomposed

13We can use a slightly more general function for human capital accumulation, but, as discussed next, we require
it to be homogeneous of degree one in h.
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into a factor that depends only on the current occupation and labor market realizations, (j, ε),

and another factor that depends only on the absolute level of human capital, h. This can be

done for any generic distribution for the labor market shocks ε for which an expectation satisfies

a boundedness condition. In all what follows, we assume that ε is distributed independently over

time and across workers, and that all the required moments involving ε are finite and well defined.

First, note that if occupation ` is chosen, then, the next period human capital is h′ = h τj`ε`.

Then, observe that the period utility function is homogeneous of degree 1 − γ in h. Therefore,

under the hypothesis that the value V (j, h, ε) is homogeneous of degree 1 − γ in h, for any

pair (j, ε), it can be factorized into a real value v (j, ε) and a human capital factor h1−γ , i.e.,

V (j, h, ε) = v (j, ε)h1−γ.14 Under this hypothesis, the Bellman Equation (4) becomes

v (j, ε)h1−γ =

(
(wj εj)

1−γ

1− γ
+ β max

`

{
χj,`Eε′ [v (`, ε′)]

(
τj,`ε

`
)1−γ

})
h1−γ.

Simplifying out the term h1−γ we end up with

v (j, ε) =
(wj εj)

1−γ

1− γ
+ βmax

`

{
χj,`

(
τj,`ε

`
)1−γ

Eε′ [v (`, ε′)]
}

, (5)

which verifies the factorization hypothesis. Therefore, the characterization of V (j, h, ε) boils down

to the characterization of v (j, ε), a random variable that depends on each realization ε. For all

occupations j = 1, ...J , denote by vj the conditional expectation of this random variable, i.e.,

vj ≡ Eε [v (j, ε)] .

Using this definition, and taking the expectation Eε [·] in both the right- and left-hand sides of

(5), the equation reduces to a recursion on vj:

vj =


Υj (wj)

1−γ

1−γ + βEε max`

[{
χj,`

[
τj,` ε

`
]1−γ

v`
}]

, for γ 6= 1,

Υj + lnwj + βEε

[
max`

{
v` +

ln(τj,`ε`)
1−β

}]
, for γ = 1,

(6)

where Υj = E [(εj)1−γ] for γ 6= 1, and Υj = E [log(εj)] if γ = 1, are scalars that are specific to

occupation j.

For all γ ≥ 0, the following lemma establishes simple conditions on the stochastic behavior of

the labor market opportunities of workers, that guarantee the existence and uniqueness of values

v ∈ RJ that solve (6). All along, we assume that τj,` > 0 and χj,` > 0 for all j, ` and that the

support of ε` is [0,∞) for all `.

14For the logarithmic case, γ = 1, V (j, h, ε) = uj + β
[
max`

{
v` +

[ln(h)+ln(τj,`ε`)]
1−β

}]
, as shown in the Appendix.
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Depending on the value of γ, and for each j = 1, ..., J , we define the terms, Φj as follows:

Φj ≡


Eε max`

{
χj,` [τj,` ε`]

1−γ} , for 0 ≤ γ < 1,

Eε max` {ln (τj,`ε`)} , for γ = 1.

Eε min`
{

[χj,` τj,` ε`]
1−γ} , for γ > 1.

Also, conditioning on the relevant definition of Φj for each γ, we define

Φ̄ = max
j

Φj.

The following lemma shows that if the average labor market opportunities available to workers are

bounded, as summarized by bounds on Φ̄, then, we can guarantee that the dynamic programming

problem (6) has a unique and well-defined solution.

Lemma 1 Let w ∈ RJ
+ be the vector of unitary wages across all occupations J . Assume that

preferences are characterized by a CRRA γ ≥ 0 and that the costs τj,` and χj,` and labor market

opportunity shocks ε satisfy the assumptions above. Then: (a) for all 0 < γ 6= 1, if βΦ̄ < 1, then

there exists a unique, finite v ∈ RJ that solves vj = Υj (wj)
1−γ

1−γ + βEε max`

[
χj,`

{[
τj,` ε

`
]1−γ

v`
}]

for all j. Moreover, if γ < 1, the fixed point v is positive (v ∈ RJ
+) and if γ > 1, the fixed

point v is negative (v ∈ RJ
−). (b) For the special case of log preferences, γ = 1, if −∞ < Φj <

+∞, ∀j, and β < 1, then, there exists a unique, finite v ∈ RJsuch that vj = Υj + lnwj +

βEε

[
max`

{
v` +

ln(τj,`ε`)
1−β

}]
for all j.

Appendix A contains the proofs for this and all other analytic results in the paper.

This lemma only verifies existence and uniqueness of the conditional expectations vj, while

the realization ε of the labor market opportunities determines the actual realized value v (j, ε). In

what follows we impose additional structure so we can characterize the behavior of v (j, ε) and

the optimal occupation choices derived for the solution to the dynamic programming problem of

workers. To this end, we add the assumption that each element in the vector of labor market

opportunities ε is distributed according to an extreme value distribution. Specifically, we impose

that in each period, the labor market opportunity ε` shocks for each labor market `, are each

independently distributed according to a Frechet distribution with scale parameter λ` > 0, and

curvature α > 1. Notice that the curvature parameter is the same for all occupations but the

scale parameters can vary across occupations.

Having impossed a Frechet distribution for ε, define for all pairs j, ` ∈ J × J ,

Ωj` =


χj,` τ

(1−γ)
j` v`, for γ 6= 1,

ln τj`
1−β + v`, for γ = 1.

(7)
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Then, the normalized BE can be succinctly rewritten as

v (j, ε) =


uj + βmax`

{
Ωj`

(
ε`
)1−γ

}
, for γ 6= 1,

uj + βmax`

{
Ωj` +

ln(ε`)
1−β

}
, for γ = 1.

(8)

We now provide a simple result that indicates that given any admissible vector v ∈ RJ ,

regardless of whether it is or not the fixed point of the BE (6), the resulting random variable

v (j, ε) is closely related to one of the extreme value distributions (scaled and displaced): (a) if

0 ≤ γ < 1, then v (j, ε) is related to a Frechet with curvature parameter α/ (1− γ); (b) if γ = 1,

then v (j, ε) is related to a Gumbel with shape parameter 1/α; (c) if γ > 1, then v (j, ε) is related

to a Weibull with curvature parameter α/ (γ − 1).

Lemma 2 Derived Distributions. Let ε` be a random variable distributed Frechet with scale

parameter λ` > 0 and curvature α > 1, i.e. its c.d.f. is Fε (ε) = e
−
(
ε
λ`

)−α
. Define:

x` ≡

{ (
ε`
)1−γ

for 0 ≤ γ 6= 1

ln
(
ε`
)

for γ = 1.

Then x` is distributed as follows:

x` ∼


Frechet

(
α

1−γ , (λ`)
1−γ
)

for 0 ≤ γ < 1,

Gumbel
(

1
α

, ln (λ`)
)

for γ = 1,

Weibull
(

α
γ−1

, (λ`)
γ−1
)

for γ > 1.

It follows that the terms in curly brackets in (8), with the product of Ω and the transformation

of ε with respect to the CRRA parameter, will follow one these distributions.15

We now complete the characterization of the worker’s problem, under the assumption that all

the entries of ε are independently Frechet distributed. The following theorem provides a simple,

sharp characterization for the fixed point problem vj that solves (6) and for the optimal occupations

decision of workers.

Theorem 1 Individual Problems. Assume for all ` = 1, ...J , the shocks ε` are independently

distributed Frechet with shape α > 1 and scales λ` > 0. Assume also that all w` are strictly positive

and that either (i) γ 6= 1 and βΦ̄ < 1 or (ii) γ = 1, β < 1 and −∞ < Φj < +∞ for all j. Then:

(i) If 0 ≤ γ < 1, the expected values vj for j = 1, ..., J solve the fixed point problem

vj = Υj (wj)
1−γ

1− γ
+ β Γ

(
1− 1− γ

α

)[ J∑
`=1

(
χj,kv

`
) α

1−γ (τj`λ`)
α

] 1−γ
α

.

15Note also that Lemma 2 allows us to characterize the value of Υj given the parameters of the distribution of
εj .
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A finite solution v ∈ RJ
+ for this BE exists and is unique. Moreover, the proportion of workers

switching from occupation j to occupation ` at the end of the period is given by:

µ (j, `) =

[
λ`τj`

(
χj,` v

`
) 1

1−γ
]α

∑J
k=1

[
λkτjk (χj,` vk)

1
1−γ

]α .

(ii) If γ = 1 the expected values vj for j = 1, ..., J , solve the fixed point problem

vj = Υj + log(wj) +
β

α (1− β)
log

[
J∑
`=1

exp
(
α (1− β)v` + α log(τj`) + α log(λ`) + ακ

)]
,

where κ is Euler’s constant. A solution v ∈ [v, v̄]J for this BE exists and is unique. Moreover, the

proportion of workers that switch from occupation j to occupation ` is given by:

µ (j, `) =
exp

(
α (1− β)v` + α log(τj`) + α log(λ`) + ακ

)∑J
k=1 exp (α (1− β)vk + α log(τjk) + α log(λk) + ακ)

.

(iii) If γ > 1, the expected values vj for j = 1, ..., J solve the fixed point problem

vj = Υj (wj)
1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(−χj,` v`)
α

1−γ (τj`λ`)
α

] 1−γ
α

.

A solution v ∈ [v, 0]J for this BE exists and is unique. Moreover, the proportion of workers

switching from occupation j to occupation ` at the end of the period is given by:

µ (j, `) =

[
λ`τj`

(
−χj,` v`

) 1
1−γ
]α

∑J
k=1

[
λkτjk (−χj,k vk)

1
1−γ

]α .

3.4 Implied Distributions of Workers and Human Capital

We now describe how the occupation choices of each worker shape up the limiting behavior of

the cross-section distribution of workers and aggregate human capital (and earnings) across the J

occupations in this economy.

Distribution of Workers Across Occupations. Notice that the homogeneity of the value

function implies that the transitions µj,` are independent of the worker’s level of human capital,

h, i.e. his absolute advantage. Let θt =
[
θ1
t , ..., θ

J
t

]
denote the 1× J vector indicating the mass of

workers in each of the occupations j = 1, 2, ..., J at time t. Since in this section we are taking the

vector of wages w as time invariant the transition matrix µ is also time invariant. Therefore, the
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evolution of θ is described by following equation,

θt+1 = θt µ.

Under the assumptions that τj` > 0, every entry of the stochastic matrix µ is positive, i.e.

for all j, `, µj` > 0. Under this basic mixing condition, standard results for Markov chains (e.g.

Theorem 11.2. in Stokey, Lucas Jr, and Prescott (1989)) it follows that there exists a unique

invariant distribution

θ∞ = θ∞ µ, (9)

and that from any initial distribution θ0, the employment distribution across occupations will

converge to it, i.e.: limt→∞ θ0µ
t = θ∞.

Distribution of Aggregate Human Capital Across Occupations. Given that the indi-

vidual labor market opportunities or productivity shocks for all workers are distributed Frechet, a

continuous distribution with full support in the positive reals, then the aggregate human capital

assigned to occupation j is given by,

Hj
t = θjt

∫ ∞
0

hφjt(dh),

where φjt(·) denotes the positive measure that describes the distribution of human capital levels h

across the workers in occupation j in period t.

Characterizing the evolution of Hj
t over time suffices to determine the general equilibrium of

the economy as we discuss in the following section. Towards that end, we first characterize the

conditional expectation of the shocks ε` for those workers that switch from any occupation j to

any occupation `:

Lemma 3 For all non-negative γ 6= 1, the expectation of the labor market opportunity shock ε` of

workers switching from j to ` is given by the following equation:

E
[
ε`|Ωj` ε

1−γ
` = max

k

{
Ωj`ε

1−γ
k

}]
= Γ

(
1− 1

α

)
λ`
[
µj`
]− 1

α , (10)

where µj` is the corresponding occupation switching probabilities as derived in Theorem 1.

A worker with human capital h in occupation j will switch to occupation ` at the end of the

period with probability µj`, bringing an average Γ
(
1− 1

α

)
τj` λ`

[
µj`
]− 1

α h of human capital skills

to that occupation. Define M to be the transition matrix of aggregate human capital, with j, `

element defined as:

Mj,` = Γ

(
1− 1

α

)
τj` λ`

[
µj`
]1− 1

α .

The matrix M is time invariant when wages are constant over time. The linearity in h allows an

easy aggregation of human capital in each occupation and also to characterize the law of motion
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for aggregate human capital. Let Ht =
[
H1
t , H

2
t , ..., H

J
t

]
be the 1 × J vector of aggregate human

capital across all occupations j in period t. Then, for time t+ 1, that vector evolves according to

Ht+1 = HtM.

It is worth remarking that we can characterize the evolution of the average (or total) skills of

workers across the different occupations, without having to solve for the within-occupation cross-

section distribution of skills and earnings. This result is useful since we can easily solve for the

aggregate supply of efficient units of labor in each occupation at each t. The matrixM is strictly

positive, i.e. Mj` > 0. Then, from the Perron-Frobenius theorem, the largest eigenvalue of M is

always simple (multiplicity one), real, and positive.16 Moreover, the associated eigenvector to this

so-called Perron root, which we denote by GH , has all its coordinates, Hj, j = 1, ..., J , strictly

positive. Moreover, in the limit, the behavior of all Hj
t will converge to

Hj
t+1 = GHH

j
t ,

for all j = 1, ...J . This is precisely the definition of a balanced-growth path (BGP) for the vector

of aggregate human capital {Ht}∞t=0. Notice that the model can naturally generate a Perron

eigenvalue greater than one GH > 1, i.e. sustained growth of the human capital of the workers,

even if the unitary wages wj and the cross-section distribution of workers θ∞ remains constant,

and even if the average realization ε` in each occupation is equal to (or even lower than) one. The

engine of growth of the individual worker’s earnings is that workers continuously select the most

favorable labor market opportunities.17

We summarize the results for the implied population dynamics of workers and human capital

aggregates, {θt, Ht}∞t=0 in the following proposition.

Proposition 1 Assume that the unitary wage vector is strictly positive, w ∈ RJ
++, and that the

conditions for Theorem 1 hold. Then: (a) There exists a unique invariant distribution of workers,

i.e., θ∞ = θ∞ µ, with θj∞ > 0 for all j and
∑J

j=1 θ
j
∞ = 1. Moreover, the sequence {θt}∞t=0 induced

by (9) converges to θ∞ from any initial distribution θ0. (b) There is a unique BGP of aggregate

human capital across occupations, Hj
t /H

1
t = hj for all j, where hj is equal to the ratios of the jth

coordinate to the first coordinate of the Perron eigenvector. Moreover, the economy converges to

Ht+1 = GH ·Ht from any initial vector H0 ∈ RJ
+.

The problem of the worker presented so far can be easily extended to capture worker hetero-

geneity along permanent characteristics (gender, race, formal education) as well as age. As shown

16See for example, Gantmacher (1959), Theorems 1 and 2 of Ch.XIII, Vol. II.
17This result is reminiscent of the mechanism in the models by Luttmer (2007) and Lucas and Moll (2014) in

which selection on favorable realization of idiosyncratic shocks endogenously generates growth at the aggregate
level. Note however that in our model it is possible for a single worker to get a realization of shocks ε below one
for all components, which implies that human capital will decrease for this individual if τ ≤ 1.
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in Appendix D, the setting can be quite flexible in allowing differences in group specific parameters

(λgroup
` , τ group

j` , χgroup
j` ), thus allowing differentiating between the human capital accumulation that

arises from labor market experience from other factors that affect the human capital of workers.

Extending the model for age differences would capture differences in the horizon of workers and

their dynamic valuation of switching occupations.

In the Section 4, we embed the workers’ problem into a production economy, and extend the

results derived here to characterize the general equilibrium of such an environment. Then, in

Section 5, we use the model to quantitatively examine the dynamics of occupation choices, income

inequality and growth in the U.S. economy. To this end, we craft our model within a simply

demographic structure in which new workers enter very period and some active workers retire.

3.5 Cohorts

We embed our model into a simple demographic structure with workers of multiple ages. Con-

cretely, we employ a simple perpetual youth model, in which a constant mass 0 < δ < 1 of new

workers enter every period, and every period, the same fraction of previously active workers die

and leave the economy. Thus, the discount factor in our previous analysis encompasses both a

pure time discount factor and a survival probability (1− δ). However, we now need to specify

the decisions of new workers, and to account for the overall population of workers in each period,

which is composed by cohorts of many different ages.

3.5.1 New Workers

In the period before entering the labor market, all new workers have one unit of human capital,

hnew = 1 and face an occupation choice similar to that of the active workers. However, new

workers are not attached to any particular occupation. Their choices will therefore be determined

by vectors τ 0 =
[
τ 0,1, τ 0,2, . . . , τ 0,J

]
and χ0 =

[
χ0,1, χ0,2, . . . , χ0,J

]
, which affect the amount of

human capital and the employment decisions of new workers in each occupation.18

Under these assumptions, the vectors of employment shares and initial human capital of new

workers across occupations are given by

θ0(j) =

[
λjτ

0,j (−vj)
1

1−γ
]α

J∑
k=1

[
λkτ 0,k (−vk)

1
1−γ

]α ,

and

H0(j) = Γ

(
1− 1

α

)
τ 0,j λj

[
θ0,j
]1− 1

α .

18As in the previous case, these two different set of parameters, τ0 and χ0 provides the model with the flexibility
to match both the occupational choices of entering cohorts as well as the differences in average earnings (human
capital) across occupations for the entering cohort.
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Both expressions are similar to those of active workers. They highlight how entering workers

choose their initial occupation according to the values vj and their average initial human capital

is determined by their optimal job selection.

3.5.2 Stationary Distributions of Workers and Human Capital

Then, we compute the values of v, the transition matrices µ, M, and the entrants employment

and human capitals θ0, H0. Then, for any age s = 1, 2, ..., the employment shares will follow

θs = µ θs−1. Out of these, only a fraction (1− δ) survives. As for human capital, the total mass

of human capital for the next period of each cohort of workers is given by Hs = (1− δ)MHs−1.

For the economy as a whole, the steady state employment shares across all cohorts is given by

θ = δ θ0 [I − (1− δ)µ]−1 .

which always exists, since µ is a stochastic matrix and its highest eigenvalue is 1. Similarly, the

steady state J-vector of aggregate human capital levels accross all cohorts would be given by

H = δ H0 [I − (1− δ)M]−1 .

It is interesting and important to highlight that H might not be well defined. Indeed, if the

Perron root ofM is higher than (1− δ)−1, then the average growth of the surviving workers more

than compensates the rate at which they die, the aggregate human capital of each cohort grows

over time, i.e. Hs > (1− δ)MHs−1, and the country’s human capital vector Ht =
∑

s≤tH
s

would grow without bounds over time, eventually, at the rate (1− δ)GH . We now illustrate the

behavior of the economy, highlighting the impact of relative unitary wages in the determination

of the aggregates. We re-state the implications of our dynamic Roy model with cohorts for the

implied dynamics of workers and human capital aggregates, for the population as a whole and for

each cohort.

Proposition 1 (Cohorts) Assume that the unitary wage vector is strictly positive, w ∈ RJ
++, and

that the conditions for Theorem 1 hold. Then: (a) There exists a unique invariant distribution of

all workers,

θ = δ θ0 [I − (1− δ)µ]−1 .

where the initial distribution θ0 is induced by the optimal occupation choices of young workers.

(b) Generically, there is either: (i) a unique stationary stock of human capital across occupations

if GH(1− δ) < 1. Such a stock is given by

H = δ H0 [I − (1− δ)M]−1 ,

where the initial distribution H0 is induced by the optimal occupation choices of young workers;
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or (ii) a unique BGP of aggregate human capital across if GH(1 − δ) > 1. If so, all entries in

the vector of human capitals asymptotically grow at the rate GH(1 − δ) and settle in the Perron

(dominant) eigenvector, i.e. Hj
t /H

1
t = hj for all j, where hj is equal to the ratios of the jth

coordinate to the first coordinate of the Perron eigenvector of M.

3.6 A Numerical Illustration

In this section, we illustrate the key mechanisms of the model. We center our discussion around

two main themes. First, we highlight the importance of dynamic occupation choices, not only for

the aggregate allocation of labor across jobs types, but also for the long run income level and its

distribution across the different workers. Second, we use these numerical illustrations to advance

the analysis of the impact of task biased technical change that affect occupations asymmetrically.

For these numerical illustrations, we aim to mimic an economy in which occupations differ

along two dimensions: (a) jobs that are either manual (M) or cognitive (C), and (b) jobs that

are either routine (R) or non-routine (N). Thus, we consider an economy with four occupations,

J = 4, that differ in both their unitary skill prices, wj, and their implied dynamic path for the

human capital of the workers, as delineated by the transferability of skills τ (j, ·).
We set the vector of unitary skill prices w and the transferability matrix τ [j, `] to be:

w =


wMR

wMN

wCR

wCN

 =


1.25/tbtc

1

1.25/tbtc

1

 , and τ [j, `] =


1.000 τRN τMC τMC · τRN
τNR 1.015 τMC · τNR τMC

τCM τCM · τRN 1.015 τRN

τCM · τNR τCM τNR 1.050

 ,

where tbtc is a ‘task-biased technological change’ shifter that reduces the productivity of routine

occupations. We use this shifter to compare different economies as explained shortly.

For the transferability of skills, we impose a simple structure whereby the costs of switching

occupations depend on whether the current job differs from the new job in one or two dimensions

and also the direction of change. Specifically, we set τCM = 0.95, τNR = 0.95, τMC = 0.7, and

τRN = 0.6. With these numbers, a worker that switches from a cognitive to a manual job, but

otherwise maintains the routine or non-routine nature of his occupation, would be able to transfer,

on average 95% of his skills. If on top of that, the worker is also switching from a non-routine

to a routine job, he will only be able to transfer on average 90.25% = τCM · τNR of his existing

skills. Moreover, this parametrization imposes that it is more difficult to switch from routine to

non-routine and from manual to cognitive than the respective moves in the opposite directions.

Finally, we parametrize the diagonal entries of the matrix so that staying in manual-routine jobs

implies average zero growth in human capital, staying in manual-non routine or cognitive-routine

jobs lead to low growth, 1.5% per period. Cognitive-non routine jobs are not better paid in terms

of unitary wages, but they lead to a much higher growth rate, 5% per period, for the worker’s
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human capital and earnings.

Having thus parametrized the matrix τ , we normalize the Frechet distribution of labor market

shocks εj to be λ = [1, 1, 1, 1]′ /Γ (1− 1/α), where we set the curvature of those distributions to

be α = 15. We assume for the discount factor, β = 0.95, a standard value for an annual model.

We set CRRA, γ = 2, also standard value in quantitative macro. In these illustrations, we set

δ = 0.04. Finally, for the new workers, we set the transferability vector to be τ 0 = [1, 1, 1, 0.65].

In this way, new workers can more easily enter occupations that are either manual or routine, while

cognitive non-routine jobs are more difficult to find right off the bat as their initial occupation. We

emphasize that these parameter choices are chosen just to illustrate the mechanics of our model.

Our quantitative exercises are in Section 5.

We use this parametrization of our model to compare economies with values of tbtc that range

from 1 to 1.25. A higher value of tbtc can be seen as task-biased technological change because

it reduces the price of routine labor, both in manual and cognitive occupations. For clarity, we

keep the price of both non-routine occupations constant, i.e. tbtc does not lead to an increase

in their price. Under these circumstances, we highlight a key mechanism of our model: that the

reallocation of workers from routine to non-routine can lead the economy to sustain much higher

levels of aggregate human capital and per capita income. This mechanism would be even stronger

if tbtc also increases the productivity of non-routine occupations.

We divide our numerical illustrations in three parts. First, we compare the steady-states

associated with different levels of tbtc. Second, we examine the transition dynamics of an economy

that permanently moves to a higher task-biased technological level. Third, we examine the impact

of mobility costs, both across steady-states or BGPs and for transitional dynamics.

Overall, these exercises show that the endogenous response in the aggregate accumulation of

human capital can lead to substantial differences across steady-states. Indeed, the response in

aggregate human capital accumulation can be so strong that higher levels of tbtc lead to a regime

change, whereby the economy switches from having a steady state to exhibit endogenous sustained

growth. For the transition dynamics, we show that the model generates non-monotone and a very

slow transition that, for many periods, can be easily confused with sustained growth. Finally, we

find that the costs of moving human capital across occupations have a profound impact on the

aggregate dynamics, not only across steady-states and BGPs, but also for the transition from a

steady state with low tbtc to another with a higher tbtc.

3.6.1 Cross Steady-States Comparisons

We start by showing that task-biased technical change in our model economy can easily replicate

the patterns of job market polarization and between-groups earnings inequality discussed in Section

2. We compute the implied steady states associated with the vectors of unitary wages w for values

of tbtc ranging from 1 to 1.25. For low tbtc levels, the wages of routine occupations are high and as

shown in panel (a) of Figure 2, their employment shares in those occupations (black and magenta)
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would almost completely dominate the economy. For higher levels of tbtc, the unitary wages of

non-routine catch up and their implied faster accumulation of skills would attract workers to those

occupations. In this example, for tbtc close to 1.25, non-routine occupations become dominant.

This pattern mimics the labor market polarization discussed above, and is even stronger when

we look at the human capital as shown in panel (b) of Figure 2 with the share of total earnings

of each occupations. Finally, panel (c) of the figure shows that a strong widening gap between

the average earnings of workers in cognitive non-routine occupations relative to all the others.

Here, we compute the values wjH
T
j /θ

T
j relative to the average GDP. It shows that while in an

economy with tbtc=1, cognitive non-routine workers would earn on average the same earnings as

manual-routine and cognitive-workers, once those workers are in an economy with tbtc=1.25 they

can earn up to 5 times more than the workers in the other occupations. Obviously, these numbers

are not driven by the pure price impact of tbtc because it is much smaller, but instead it is driven

by the sustained human capital accumulation of workers in cognitive/non-routine occupations.

Figure 2: Employment & Earnings: BGPs across Task-Biased Technological Levels
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Figure 3: Employment & Earnings: BGPs across Task-Biased Technological Levels
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The reallocation of workers across occupations can have an enormous impact for the behavior

of aggregate output. Panel (a) of Figure 3 shows the average life-cycle earnings profile of workers
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in economies with different values of tbtc. With tbtc=1 (black line), most workers would opt for

routine occupations and, on average, accumulate human capital very slowly. With tbtc=1.125

(red-line), young workers would earn less in the beginning, but their life-cycle profiles are much

steeper. Instead of just doubling their income after 45 years of labor market experience, their

earnings would be more than seven times higher. Much steeper profiles accrue when tbtc=1.25

(blue line). Hence, with differences in tbtc levels, our model naturally replicates the patterns

unveiled by Lagakos et al. (2018) across countries with different levels of development. At the

aggregate level, these differences in the accumulation of human capital can lead to very large

income differences as shown in panel (c) of Figure 3. A change from tbtc=1 to tbtc=1.2 would

be associated with (eventually) multiplying the income of the country by more than 7 times. In

fact, this simple mechanism is so strong that it leads to a bifurcation in the behavior of income.

As shown in the panel (b), GDP has a vertical asymptote around 1.22, and aggregate output

can be arbitrary high for values of tbtc close enough to it. As explained above and illustrated in

panel (c) of Figure 3, the reallocation of workers in the economy leads to a change in the overall

growth in their human capital which can lead to a bifurcation in the aggregate economy. This

is captured by the implied Perron Root of the matrix M for different values of tbtc. Here, the

solid-blue line denotes the case when GH < (1− δ)−1, and the economy settles in a steady state.

The dashed-black curve capturers the cases in which the above condition is not met and then

the aggregate human capital of the country would keep growing and no steady-state could exist.

Under the parameter values of the exercise, the point of bifurcation is when tbtc has a value of

1.22. Above that bifurcation, aggregate output of the country would grow at the endogenous rate

GH (1− δ) every period.

3.6.2 Transition Dynamics

We now explore the aggregate transitional dynamics of an economy that experiences a once-and-

for-all task biased technical change. Specifically, we assume that the economy is initially at tbtc=1

and then, unexpectedly but permanently at t = 6, it shifts to tbtc=1.2. Then after, the wages

of routine occupations fall permanently, and all workers, including the new and future ones, will

take those new wages as given. Recall that for clarity, non-routine unitary wages remain constant.

Panels (a) and (b) of Figure 4 display the response, over time, in the employment shares and the

human capital allocated to the four occupations. As expected, workers in the routine occupations

start moving away from them towards the non-routine occupations. This is a long and persistent

process because of the substantial costs of existing workers when switching occupations. Yet,

much of the reallocation of workers happens in the first twenty years, and after fifty periods it

is almost done. The transition for human capital levels across occupations requires much more

time. As shown in the figure, from being a negligible fraction, the human capital in cognitive

non-routine occupations becomes the dominant one. Aggregate human capital needs a long time

to settle into the new steady state level. Even after three hundred period the economy is far from
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Figure 4: Aggregate Transition: from tbtc=1 to tbtc=1.2
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the new balanced growth path.

Most interesting, this once-and-for all change leads to a non-monotone and long-protracted

transition. To be sure, since the fall in the wages of routine workers are without a counterpart

on those of non-routine, they necessarily lead to an initial collapse in aggregate output. After

approximately ten years of stagnation, output starts to grow, but it needs about fifty periods to

reach again the initial levels. From then on, the economy will keep growing for many periods. In

this example, it requires more than 600 periods for the economy to really get close to the new

steady state.

3.6.3 Aggregate Consequences of Occupation Mobility Costs

Finally, in this section, we examine the aggregate implications of occupation mobility costs. To

this end, we compare the previous economy (benchmark) with two economies in opposite sides

of mobility costs. For concreteness, we focus on the cost of moving from routine to non-routine

jobs. Our benchmark with τRN = 0.6 is compared with:(a) an economy with lower mobility

costs with τRN = 0.8, and with (b) an economy with higher mobility costs with τRN = 0.4.

Keeping all other parameters the same, we compare the economies both across steady states/BGPs

for different tbtc levels and for the same transitional dynamics as above.

Panels (a) and (b) of Figure 5 present the results for the cross steady states/BGPs. Panel

(a) clearly shows that mobility costs have a very strong detrimental impact on the growth rate in

the workers’ earnings over the life-cycle, specially for lower levels of tbtc. Interestingly, when the

costs of mobility are high (red line), advances in tbtc can be neutralized and have no impact on

the life-cycle profiles and the overall aggregate economy. For higher levels of tbtc, the differences

in mobility costs can be quite large. The implied growth rate of earnings is much higher with

high mobility (high τRN , blue line.) Panel (b) shows that the effect on aggregate output can be

quite high. For instance, with tbtc=1.1, the output with high mobility can be up to fifteen times

the output in the other two economies. For higher levels of tbtc, the implications can be even
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Figure 5: BGPs and Transitions: Task-Biased Technological Levels and Mobility Costs
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more dramatic. Notice that the bifurcation point between steady states and BGPs takes place at

a much lower level in the high mobility economy than in the benchmark. For the low mobility

economy, the bifurcation point is at a higher level than in the benchmark.

Finally, panel (c) of Figure 5 presents the transition dynamics for the three economies after the

same shock as before from tbtc=1 to tbtc=1.2. To facilitate the comparison, aggregate outputs

have been normalized to the initial level. The qualitative features of the aggregate responses are

similar, but the actual impact over time depends on the level of mobility. Economies with lower

mobility settle sooner partly because of a smaller final impact. Notably, for economies with high

mobility, the change implies shifting from a stagnant economy to one that will grow forever after.

4 The General Equilibrium Model

We now set up our general equilibrium environment. First, we specify the production of final goods,

which defines the demand for the different types of labor and capital and the production price

of final goods. Second, we define competitive equilibria, where the price of goods, labor services

and capital clear all markets. Third, we provide a sharp characterization of the intratemporal

equilibrium conditions. Finally, we prove the existence of balance growth path (BGP) equilibria.

4.1 The Environment

4.1.1 Production

We consider multiple types of workers and physical capital as factors of production of final goods.

Our setting encompasses features of the standard neoclassical model and of recent models of substi-

tution between workers and machines (e.g. Acemoglu and Restrepo (2018)), within a worker-task

assignment model (e.g. Costinot and Vogel (2010).) First, as in standard macro models, we allow

for some forms of physical capital to operate as a complementary factor of all forms of labor. Sec-
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ond, as in Acemoglu and Restrepo (2018), we also allow for some other forms of physical capital

(machines) to compete with workers in the performance of tasks. As Costinot and Vogel (2010),

different types of workers must be be assigned across multiple production tasks according to their

comparative advantage, which is determined in general equilibrium. The resulting multidimen-

sional production setting allows for technological changes that have a heterogeneous impact on

the different types of labor.

Consider an economy with a single final good, which is produced according to a Cobb-Douglas

over structures and other forms of physical capital, Kt, and a bundle of tasks, Qt,

Yt = (Kt)
ϕ (Qt)

1−ϕ ,

where 0 < ϕ < 1.19 The bundle of tasks Qt is given by a CES production function defined

over many tasks. There are J occupations and in each occupation a continuum of tasks must be

performed. The production of aggregate tasks is defined as

Qt =

[
J∑
j=1

(
Qj
t

) ρ−1
ρ

] ρ
ρ−1

,

where Qj
t is the output of tasks from each occupation j and ρ is the elasticity of substitution

across the output from the different occupations. For each j, the output Qj
t arises from the use of

workers and machines performing many different tasks. We take the set of those tasks to be the

continuum [0, 1]. In particular, we assume that

Qj
t =

(∫ 1

0

[
qjt (x)

] η−1
η dx

) η
η−1

,

where η > 1 is the elasticity of substitution across the different tasks.

For each x ∈ [0, 1], the output qjt (x) is obtained from the use of human capital Hj
t or machines

M j
t in that occupation and task. Extending Acemoglu and Restrepo (2018), we assume that

machines and labor are perfect substitutes to each other in the production of each task x in

occupation j. The production function of qt(x) is described by

qjt (x) = zj,Mt (x)M j
t (x) + zj,Ht (x)Hj

t (x), (11)

where = zj,Mt (x) is the productivity of machines performing task x in occupation j, and zj,Ht (x)

is the productivity of workers in that occupation performing this task x. Here, Hj
t (x) and M j

t (x)

are total effective units of labor j and machines used in task x.20

19In this way, our Cobb-Douglas assumption between structures and the other factors of production follows
closely Krusell et al. (2000).

20The production function of tasks in equation (11) can easily be extended to incorporate several factors of
production, like different types of machines (computers, robots) or different types of labor (non-college educated,
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For tractability, we assume that for all j, x ∈ [0,1] and periods t, the productivities of labor j

and machines are the products of time-varying components and a time-invariant components. For

each j, the time-varying component is common across all x ∈ [0,1] . The task specific components

differs across occupations j but is fixed over time. Then, the productivity level workers and

machines are, respectively, zj,Ht (x) = Aj,Ht zj,H(x) and zj,Mt (x) = Aj,Mt zj,M(x). Furthermore, for

each j, we assume that the time-invariant components are distributed i.i.d. Frechet across the

different tasks with shape parameter νj > 1. For all j, we normalize the scale parameters to

to one. In this way, we can use the results in Eaton and Kortum (2002) to further characterize

optimal demands of factors of production for the different tasks and the overall production cost

of the good as we discuss below.

4.1.2 Capital Owners

We assume that the two forms of physical capital, machines M j
t across all occupations j and

structures and other equipment Kt are owned by a separate set of households. These households,

which we call ‘capital owners,’ have a constant population with measure 1. Capital owners have

standard preferences, given by

UK
t =

∞∑
s=0

βt
(
cKt
)1−γ

1− γ
, (12)

where, for simplicity, we have assumed that the discount factor β and the CRRA γ have the same

values as those of the workers, however, we need to assume γ > 0 for an interior solution on the

investment problem.

Both forms of capital follow neoclassical laws of motion:

Kt+1 =
(
1− δK

)
Kt + ξKt I

K
t , and (13)

M j
t+1 =

(
1− δM

)
M j

t + ξMt I
M,j
t , ∀j = 1, 2, . . . J, (14)

where 0 < δK , δM < 1. Both forms of investment IKt , IM,j
t are in units of the final good. The

strictly positive terms ξKt and ξMt capture investment specific productivities. We assume that the

same parameters δM , ξM govern the law of motion for the machines in all j. Then, in equilibrium,

the return to investing in machines must be equalized across all j, and we only need to keep track

of a single rental price of machines.

Capital owners rent out machines and structures, taking as given their rental prices, rMt , and

rKt . Capital owners can freely borrow or lend at the gross (real) interest rate Rt/Pt. We denote by

Bt the net financial position of the representative capital owner in period t. In terms of financial

markets, below we consider two polar cases. First, we consider a small open economy in the

interest rate Rt in every period is taken exogenous from international capital markets. Second, we

college educated), each with different comparative advantages in the production of tasks. All of the expressions we
derive next easily extend to this more general case.
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consider a closed economy equilibrium in which Bt = 0 for all periods.

4.2 Competitive Equilibria

We assume all labor, capital and goods markets are perfectly competitive. Taking as given the

sequence
{
Pt, w

j
t , r

K
t , r

M
t , Rt

}∞
t=0

of goods prices, the unitary skill price for jobs of all types j =

1, ..., J and the rental rate of both forms of capital, firms and households maximize their current

profits and expected lifetime utilities, respectively. To formally define competitive equilibrium in

this environment, we first define the individual problems of firms and workers and outline the

market clearing conditions.

4.2.1 Workers’ Optimization and Aggregate Labor Supply

The maximization problem of each of the workers is simply the time-varying extension of the

problem characterized in Section 2. For brevity, we only consider here the case of γ > 1, as the

other cases are similar. For every t, j and h, the expected normalized values
{
v`t
}J
`=1

of an active

worker solve the problem recursion:

vjt =
(wjt )

1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(−χj,` v`t+1)
α

1−γ (τj`λ`)
α

] 1−γ
α

, (15)

and their optimal occupation choices, i.e. transitions from any j to any ` are given by

µj`t =

[
λ`τj`

(
−χj,` v`t+1

) 1
1−γ
]α

∑J
k=1

[
λkτjk

(
−χj,k vkt+1

) 1
1−γ
]α , (16)

where
{
v`t+1

}J
`=1

solves the problem for the subsequent period. Similarly, the transition matrix for

aggregate human capital from occupation j to occupation ` for the time-varying case is simply

Mj`
t = Γ

(
1− 1

α

)
τj` λ`

[
µj`t

]1− 1
α

. (17)

The implied laws of motion for the population of workers and aggregate human capital across

occupations are, respectively

θt+1 = δθ0
t + (1− δ)θtµt, (18)

and

Ht+1 = δH0
t + (1− δ)HtMt, (19)

where in each period, the new workers’ employment shares and human capital capital stocks are
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given by their optimal entry in the labor markets:

θ0,j
t =

[
λjτ

0,j
(
−vjt

) 1
1−γ
]α

J∑
k=1

[
λkτ 0,k

(
−vkt

) 1
1−γ
]α ,

and

H0,j
t = Γ

(
1− 1

α

)
τ 0,j λj

[
θ0,j
t

]1− 1
α ,

where the vector τ 0 denotes the transferability of the a new worker’s human capital into occupation

j at the time of entering labor markets for the first time.

4.2.2 Firms’ Optimization and Labor Demand

In this setting, productivity differences and the linearity of qt(x) ensures that, except for a set

with measure zero, each of the tasks within an occupation will be provided either by only labor

or by only machines, according to their comparative advantage. To see this, let wjt be the unitary

price of effective labor j and rMt be the rental rate of a machine at time t. Because of perfect

substitution, the minimum cost of producing one unit of task x in occupation j is

cjt(x) = min

{
wjt

zH,jt (x)
,

rMt
zM,j
t (x)

}
. (20)

Clearly, the ratios between factor prices and productivities determine whether workers or machines

will take care of a particular task in a particular occupation.21 The minimized unitary cost of

producing the tasks from every occupation j, Cj
t , is the solution of the program:

Cj
t = min

qjt (x)

∫ 1

0

cjt (x) qjt (x) dx s.t.

(∫ 1

0

[
qjt (x)

] η−1
η dx

) η
η−1

= 1. (21)

Having solved for Cj
t , the next step for the firm is to solve for CQ

t , the minimized cost of producing

the aggregate bundles of tasks, by optimally using the inputs from all occupations. That problem

is simply

CQ
t = min

{Qj}Jj=1

[
J∑
j=1

Cj
tQ

j

]
s.t.

(
J∑
j=1

(
Qj
) ρ−1

ρ

) ρ
ρ−1

= 1. (22)

Finally, given the rental price rKt for physical capital Kt, and the unitary cost of tasks CQ
t , the

21Our task and production assignment is connects with Acemoglu and Restrepo (2018). In our setup the as-
signments of workers and machines to tasks is determined by factor prices and their relative productivities. As we
show next, using properties of the Frechet distribution, we get very tractable and intuitive expressions.
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competitive price of final goods is simply its minimized unitary production cost, i.e.:

Pt = min
K,Q

[
rKt K + CQ

t Q
]

s.t. (Kt)
ϕ (Qt)

1−ϕ = 1. (23)

The following proposition characterizes the solution of all these optimization problems:

Proposition 2 For all j = 1, . . . J , assume that zH,jt (x) are all distributed i.i.d. Frechet, with

shape and scale parameters
{
νj, A

H,j
t

}J
j=1

. Similarly, for machines, assume that the productivities

zM,j
t (x) are also distributed Frechet with shape and scale parameters

{
νj, A

M,j
t

}J
j=1

across occupa-

tions j. Then: (a) The probability that at time t labor implements any task x in occupation j

is

πH,jt =

(
AH,jt /wjt

)ν
(
AM,j
t /rMt

)ν
+
(
AH,jt /wjt

)ν , (24)

while the probability that the task is implemented by machines is

πM,j
t =

(
AM,j
t /rMt

)νj(
AM,j
t /rMt

)νj
+
(
AH,jt /wjt

)νj . (25)

(b) The minimized unitary costs Cj
t of producing the bundle of tasks from each occupation j are

Cj
t = Γ

(
1 +

1− η
νj

) 1
1−η [(

AMt /r
M,j
t

)νj
+
(
AH,jt /wjt

)νj]−1
νj . (26)

(c) The minimized unitary costs CQ
t of producing the aggregate bundle of tasks is

CQ
t =

{
J∑
j=1

Γ

(
1 +

1− η
νj

) 1−ρ
1−η [(

AM,j
t /rMt

)νj
+
(
AH,jt /wjt

)νj] ρ−1
νj

} 1
1−ρ

. (27)

(d) The price of the final goods is

Pt =
[
ϕ−ϕ (1− ϕ)ϕ−1] (rKt )ϕ (CQ

t

)1−ϕ
. (28)

4.2.3 Capital Owners

Given an initial level structures, K0 > 0, and machines M j
0 > 0, for j = 1, . . . , J , an initial

financial position B0 and a sequence of good prices, capital rental rates, and interest rates,{
Pt, r

K
t , r

M
t , Rt

}∞
t=0

, the budget constraint of capital owners, at any period t, is

rMt
Pt

J∑
j=1

M j
t +

rKt
Pt
Kt +

Rt

Pt
Bt = cKt + IKt +

J∑
j=1

IM,j
t +Bt+1, (29)
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where the laws of motion for Kt and M j
t are given by (13) and (14), respectively.

Under the conditions just stated, the program of consumption, investments and capital stocks,{
cKt , I

K
t , I

M,j
t , Kt+1,M

j
t+1, Bt+1

}∞
t=0

, that maximizes (12) is characterized by a standard transver-

sality condition, and three Euler equations that can be written as:

Rt+1

Pt+1

= β−1

(
cKt+1

cKt

)γ
, (30)

rKt+1

Pt+1

=

Rt+1

Pt+1
−
(
1− δK

)
ξKt

, (31)

rMt+1

Pt+1

=

Rt+1

Pt+1
−
(
1− δM

)
ξMt

, (32)

where (32) applies for all the machines in occupations j = 1, . . . J .

4.2.4 Competitive Equilibrium

Having characterized the individual optimality conditions of all agents in the economy, we now

define and characterize the competitive equilibria in this economy.

Definition 1 (Equilibrium) Given an initial population of workers and their human capital,{
θj0, Hj

0

}J
j=1

, initial stocks of machines and other physical capital
{
M j

0

}J
j=1

, K0, and an ex-

ogenous productivities sequence

{{
AM,j
t , AH,jt

}J
j=1

}∞
t=0

an equilibrium is (i) a price system{
wjt , Pt, r

K
t , r

M
t , Rt

}∞
t=0

, (ii) individual worker occupation decisions
{
vjt ,µt

}∞
t=0

, (iii) individual

firm tasks-allocation choices
{
πM,j
t , πH,jt

}∞
t=0

, (iv) aggregate vectors of workers and human capi-

tal across occupations, stocks of machines and other physical capital,
{
θt, Ht,M

j
t , Kt

}∞
t=0

, and,

(v) aggregate output, worker and human capital reallocations, and flows of investments and of con-

sumption of the owners of capital,
{
Yt, µt, Mt, I

K
t , I

M
t , c

K
t

}∞
t=0

such that: (a) Given
{
wjt , Pt, r

K
t , r

M
t

}∞
t=0

,

the workers lifetime optimization
{
vjt ,µt

}∞
t=0

are given by (15) and (16); the firms optimize pro-

duction, i.e.
{
πH,jt , πM,j

t , Pt

}∞
t=0

are given by (24), (25), and (28); and capital owners invest

optimally, i.e. according to (29), (31), and (32.) (b) factor markets clear in every period t, and

(c) the population of workers and human capital allocation evolve according to (18) and (19.)

We now characterize the aggregate output and the prices of human and physical capital that

arise from the market-clearing conditions in every period given an exogenous level for productivities{
Ajt , A

M
t

}
, and pre-determined levels of aggregate supplies Hj

t , Mt and Kt.

4.3 Static Market Clearing Conditions

The following proposition characterizes the intratemporal equilibrium conditions determining

prices and production, taking as given the stocks of physical and human capital.
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Proposition 3 Aggregation, Intratemporal Equilibrium. Given pre-determined aggregate

variables,
{
Kt, M

j
t , Hj

t

}
, the intratemporal competitive equilibrium condition imply that:

(a) the output of tasks of all occupations j, Qj
t , the aggregate bundle of tasks, Qt, and the

aggregate output of goods, Yt, are respectively given by:

Qj
t = Γ

(
1 +

1− η
νj

) 1
η−1
[(
AM,j
t M j

t

) νj
1+νj +

(
AH,jt Hj

t

) νj
1+νj

] 1+νj
νj

, (33)

Qt =

 J∑
j=1

Γ

(
1 +

1− η
νj

) ρ−1
ρ(η−1)

[(
AM,j
t M j

t

) νj
1+νj +

(
AjHt Hj

t

) νj
1+νj

] (1+νj)(ρ−1)

νj ρ


ρ
ρ−1

, (34)

Yt = (Kt)
ϕ

 J∑
j=1

Γ

(
1 +

1− η
νj

) ρ−1
ρ(η−1)

[(
AjMt M j

t

) νj
1+νj +

(
AjHt Hj

t

) νj
1+νj

] (1+νj)(ρ−1)

νj ρ


(1−ϕ)ρ
ρ−1

.(35)

(b) The equilibrium real rental rates of structures, ρKt ≡ rKt /Pt, and of machines in all occu-

pations j ρM,j
t ≡ rM,j

t /Pt and the real unitary wages of workers ωjt ≡ wjt/Pt, are, respectively

ρKt = ϕ
Yt
Kt

, (36)

ρM,j = (1− ϕ) Γ

(
1 +

1− η
νj

) 1
η−1

(
AM,j
t M j

t

Qj
t

) νj
1+νj

(
Qj
t

Qt

) ρ−1
ρ
−

νj
1+νj Yt

M j
t

, (37)

ωj = (1− ϕ) Γ

(
1 +

1− η
νj

) 1
η−1

(
AM,j
t Hj

t

Qj
t

) νj
1+νj

(
Qj
t

Qt

) ρ−1
ρ
−

νj
1+νj Yt

Hj
t

. (38)

These simple aggregation results, can directly be used to solved for the income share of the

different factors of production. In particular, the total capital (structures+machines) output share

is given by

ρKt Kt +
∑J

j=1 ρ
M,j
t M j

t

Yt
= ϕ+ (1− ϕ)

J∑
j=1

Γ

(
1 +

1− η
νj

) 1
η−1

(
AM,j
t M j

t

Qj
t

) νj
1+νj

(
Qj
t

Qt

) ρ−1
ρ
−

νj
1+νj

,

which endogenously responds to the relative supply of human and physical capital and their relative

productivity levels. To illustrate this point more clearly, consider the special case in which Qt is

a Cobb-Douglass, i.e., ρ = 1, over all occupations outputs Qj
t with shares %j. In such a case, the

capital income share boils down to

ρKt Kt +
∑J

j=1 ρ
M,j
t M j

t

Kt

= ϕ+ (1− ϕ)
J∑
j=1

%j

(
AM,j
t /rMt

)νj(
AM,j
t /rMt

)νj
+
(
AH,jt /wjt

)νj , (39)

where we have used the expressions in Proposition 2 that characterizes the output share of machines
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in each of the occupations j. This expression highlights how levels of technology, wages and rental

rates endogenously drive the capital output share. Extending Acemoglu and Restrepo (2018) to

a tractable setting with multiple types of occupations and labor, the labor share of our economy

depends on how efficient are machines in performing different tasks relative to labor. For example,

an increase in the productivity of machines, AM,j
t , across at least some of the occupations, or a

reduction in the rental rates of machines, rMt , would lead to an overall decrease in the labor share.

An additional important aspect of Proposition 3 is that we can characterize the aggregate

production of our economy. It is worth highlighting that different factors of production differ in

their comparative advantage in the production of individual tasks, yet we can aggregate all the

task that are completed by the different factors in a tractable way. Our task-based approach con-

nects closely with a large macroeconomic literature on skill-biased technical change which directly

assumes an aggregate CES production function using different factors (see for example Krusell et

al. (2000)). In this way, our proposed model of production provides a micro-foundation for the

CES aggregate production functions typically used in this literature. Note that the parameters νj,

which affect the distribution of the productivity of machines and labor in the production of differ-

ent tasks, are directly linked to the aggregate elasticity of substitution between capital and labor

in the production of the output of an occupation, which is 1 + νj. The intuition for this can be

easily grasped by looking at Figure 6, which shows two different distribution for task productivity

zH,j, one with a relatively large value of νj = 2 and one with a lower value of νj = 0.5, and equal

scale parameters. Note that for the distribution with a lower νj, the dispersion in the productivity

of different factors is larger (fatter tail), while is smaller in the other case. In other words, factors

tend to have a more similar productivity –similar comparative advantage– with larger νj. This

implies that, for a similar change in factor prices, there will be more substitution between labor

and machines in the case of larger νj. Thus, in the aggregate, the elasticity of substitution between

factors is governed by this parameter of the shape of the Frechet distribution of productivities.

Figure 6: Different dispersion in comparative advantages of labor and machines
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4.4 Dynamics

We now consider the dynamic behavior of the economy. We first consider the time-invariant equi-

libria, when the economy follows a balanced-growth paths (BGP). We then consider the behavior

of the economy outside the BGP, that is, the dynamic equilibrium responses of the economy to

changes in, for example, the underlying productivities of both labor and machines.

4.4.1 Balanced Growth Paths (BGP)

Consider now the long-run behavior of an economy in which the productivity of different types of

labor grows at a common and exogenous gross rate GA over time, while that of machines stays

constant. That is, AHjt+1 = GAA
H,j
t and AMj

t+1 = AMj
t in the long-run. An equilibrium would accrue

where all the real unit wages grow at the same rate GA but real rental rates are constant. In

this equilibrium, aggregate human capital will be constant, but physical capital (machines and

structures), labor earnings and total output grow at rate GA.

Assume that the productivity of all types of labor grow at a constant rate GA ≥ 1, i.e.:

AMj
t = aMj, and, AHjt = aHj (GA)t,

for all j = 1, ..., J and t ≥ 0, for some exogenous constants GA > 0 and aHj, aMj. In addition

to the rate GA, the earnings of individual workers along a BGP would grow, on average, at the

endogenously determined rate GH . In what follows, we restrict attention to the case when GH <

(1− δ)−1, so that the total weight of earnings of cohorts fall as they age.22 Hence, the aggregate

human capital of the country settles to a time-invariant level, H = δH0 [I − (1− δ)M]−1, and the

rate of growth of the economy is the exogenous rate GA.

The dynamic programming results in the previous section easily extend to the case where real

wages grow at a common constant rate GA. In this case, lifetime utilities per unit of human capital

grow at rate G1−γ
A . This common trend may impact occupation choices by changing the effective

discount factor of the workers. Define vjt = v̄j (G1−γ
A )t and ωjt = ω̄j (GA)t, where v̄ and ω̄ are

constant along a BGP. The problem of the worker in a BGP for γ > 1 takes the form

v̄j (G1−γ
A )t =

(ω̄j (GA)t)1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(χj,` v̄
j (G1−γ

A )t+1)
α

1−γ (τj`λ`)
α

] 1−γ
α

,

which can be further simplified to,

v̄j =
(ω̄j)1−γ

1− γ
− β(G1−γ

A ) Γ

(
1− 1− γ

α

)[ J∑
`=1

(χj,` v̄
j)

α
1−γ (τj`λ`)

α

] 1−γ
α

. (40)

22Economies in which GH(1− δ) > 1 have the very unappealing feature that asymptotically, the aggregate labor
income would be concentrated in a measure zero of workers with infinite age.
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This is an expression very similar to that of Theorem 1.23 The formulae for µ andM are essentially

those of Section 2, but using v̄. The average growth rate of each individual worker’s human capital

over his life-cycle, GH , is governed by the Perron root ofM, which, as explained there, is unique,

real and strictly positive.

The Euler equations (31) and (32) of capital owners require that the rental rates of both forms

of physical capital along a BGP satisfy

ρK =
R/P −

(
1− δK

)
ξK

, (41)

ρM =
R/P −

(
1− δM

)
ξM

, (42)

The analysis that follows applies equally to small open economies, where the real interest rate

is exogenously given, i.e.: R/P = R∗/P ∗, and to closed economies, where the interest rate in a

BGP is also exogenously given by R/P = β−1 (GA)γ. In both cases, the rental rate of structures

and machines is pinned down by the Euler equations (41) and (42.)

Before proceeding to a complete definition, we introduce some additional notation. Along a

BGP, we have IKt = iK (GA)t, IM,j
t = iM,j (GA)t, Kt = k (GA)t, M j

t = mj (GA)t, and Yt = y (GA)t,

where iK , iM,j, k, mj, and y, are constants that depend on parameters and growth rates.

We use the following definition of a BGP:

Definition 2 Given an exogenous productivity growth rate GA, a Balanced Growth Path is a

pair of constant rental rates,
(
ρK , ρM

)
, a constant real interest rate, R/P , a vector of constant

detrended wages, ω̄j, the average growth rate of the workers’ human capital, GH , a positive vector

h ∈ RJ
++ of shares of aggregate human capitals, and positive constants

(
k,mj, iK , iMj, y

)
related to

investment, capital and output, and individual solutions for the workers problems {v̄, µ,M} such

that: (a)
(
ρK , ρM , ω̄j

)
solve the intratemporal conditions (36), (37) and (38) for h, k,mj; (b) The

growth rate GH is the Perron root of M and h is proportional to H = δH0 [I − (1− δ)M]−1. (c)

The rental rates of structures and machines ρK , ρM satisfy the Euler equations (41) and (42). (d)

Given ω̄j, {v̄, µ} solves the individual worker’s optimal occupation choice problem and M is the

associated transition function for aggregate human capital.

Theorem 2 Consider an economy with: (a) strictly positive vector of labor productivity levels,

AM and
{
Ajt
}J
j=1

, with gross growth GA ≥ 1; (b) rental rates of machines and structures ρMbgp,ρ
K
bgp

are that are either exogenously given or determined by GA and the Euler equations of the capital

owners; (c) the parameters are such that the worker’s problem with growth, (40), is well defined.

Then: (1) There exists a BGP in which a time invariant {v̄, µ} solve the individual worker’s

problem and induce constant transition matrices µ,M and an invariant distribution of workers

attains, i.e., θ = δθ0 [I − (1− δ)µ]−1 . Moreover, (i) if the implied Perron root satisfies GH < (1−
23All the existence and uniqueness proofs of the value function extend to this case for variable v̄, but adjusting

the discount factor to be β(G1−γ
A ).
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δ)−1, then the aggregate human capital remains constant, H = δH0 [I − (1− δ)M]−1, and output,

capital and wages,
{
Yt, Kt,M

j
t , w

j
t

}∞
t=0

. (i) if instead, the Perron root satisfies GH > (1 − δ)−1,

then the aggregate human capital remains grows at the rate (1− δ)GH , wages grow at the rate GA,

and output and capital grow at the rate GAGH(1−δ).
{
Yt, Kt,M

j
t , w

j
t

}∞
t=0

. (ii) If there are unique

ratios Hk/M j associated to ρMbgp,ρ
K
bgp, then the BGP is unique.

Proving uniqueness of the BGP has been a more elusive task for the general case. However,

we show in the appendix that it boils down to examining the solution to a system of J equations

on J unknowns, which can be easily done computationally.24

4.5 Transitions: Dynamic Hat Algebra

Having established the conditions for a BGP, in this section we examine the implied dynamics of

the model outside a BGP. To this end, in this section we extend the Dynamic Hat Algebra (DHA)

methods of Caliendo, Dvorkin, and Parro (2019) to a model with general CRRA preferences,

human capital accumulation and endogenous growth.

Proposition 4 Dynamic Hat Algebra. If initial allocations of the new cohort of workers and

human capital across occupations at period t = 0, θ0,j
0 > 0, H0,j

0 > 0, transition matrices of work-

ers and human capital, µ−1,M−1, initial ratio of current vs permanent income Φj
0, lifetime and

factor payments/shares, πH,j0 , πM,j
0 and the share of occupation j in non-structures value added,

%j0, ∀ j, are all observed, and the values for the discount factor β, the CRRA coefficient γ, the

depreciation rates δM , δK, the share of structures in aggregate income, ϕ, the elasticity of substi-

tution between different occupations in production, ρ, and the curvature parameters α and νj, are

known (estimated or calibrated), then: (a) the sequential equilibrium of this economy can be writ-

ten in changes relative to the BGP. (b) Given an unanticipated change in machines or workers’

productivity levels,
({
AH,j, AM,j

}J
j=1

)
, or price of equipment (investment efficiency), ξMt , we can

compute the sequential equilibrium of this economy in changes. (c) For both (a) and (b), it is not

necessary to know the levels of a large number of parameters related to mobility frictions (τ , ξ),

or productivities (AH , AM , λ, ξK, ξM).

The proof of the proposition is in Appendix B, where we also lay down the equations that

describe the model in changes relative to a BGP.

Using dynamic-hat-algebra methods is particularly convenient for the computation of the model

for two reasons. First, the levels of a large set of parameters, like τ , χ, λ, or the initial levels of

productivity, AM , AH , ξM ξk, are not needed to calibrate the model or to perform counterfactual

analysis, only the changes in these variables, to the extent that they change, are required. This

implies that the calibration exercise is less demanding. Second, the level of many of the model’s

24 We have an iterative algorithm to check uniqueness. In our computational exercises and under our preferred
calibration, we use different initial guesses and always obtain the same BGP.
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endogenous variables are not needed and the initial and terminal values for many endogenous

variables expressed in changes are easy to characterize.

5 Quantitative Analysis

In this section, we use our model to quantitatively explore whether a sequence of task biased

technological changes (tbtc) can jointly account for two salient trends in the U.S. economy, as

observed during the last forty years. First, the output share of labor has declined substantially,

around 5% as documented by Karabarbounis and Neiman (2013) since 1980. Second, there has

been a remarkable polarization in employment and earnings in U.S. labor markets and an increase

in overall wage inequality, as summarized by Acemoglu and Autor (2011). Like these authors, we

highlight technological changes as an explanation for production shifts from workers to machines.

However, our emphasis is on the ensuing reallocation of workers and human capital from some

occupations that are losing their race with machines to other occupations.

We first describe our sources of data and our calibration strategy. In particular, we justify

our use of observed data for the U.S. in the 1970s as an initial equilibrium BGP, explaining the

moments we match. Then, we describe how we set the values for some key parameters. Next, we

describe how we use data on the relative price of equipment and occupation shares to calibrate the

sequence of task-biased innovations hitting the economy since the early 1980s. We ascertain how

much the model replicates the increased inequality observed in the data since 1980 by comparing

the results of the model with tbtc vs. the underlying economy without those shocks.

5.1 Data and Initial Equilibrium

We first describe our calibration strategy for the parameters related to the worker’s problem.

Then, we describe our calibration of the parameters linked to production.

We assume that the U.S. economy was in a BGP by the end of the 1970s and calibrate the

initial BGP of our model to match the equilibrium conditions to those of the U.S. at that time.

For this we need a reliable source of microdata on occupational mobility and earnings dynamics

with a panel dimension. The panel dimension is needed to compute measures of occupational

mobility of workers and also how workers’ earnings change with occupational moves. Following

Kambourov and Manovskii (2013), we use the Panel Study of Income Dynamics (PSID), which has

a representative sample of the U.S. economy and is widely used in the labor and macroeconomics

literature. A key advantage of the PSID is that information on occupations between 1968 and

1980 has been corrected for occupation miss-classifications that lead to spurious occupational

switches. As discussed in Kambourov and Manovskii (2013), occupation miss-classification can be

an important source of biases for measures of occupational mobility.

Typically, the choice of the level of disaggregation for occupations has to balance computa-

tional costs and sample sizes of available data. The latter is the limiting constraint for our exercise
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because of the relatively small sample of the PSID.25 We calibrate our model to nine broad oc-

cupations: (1) Management, business, and financial operations occupations; (2) Professional and

related occupations; (3) Service occupations; (4) Sales and related occupations; (5) Office and

administrative support occupations; (6) Construction and extraction occupations; (7) Installa-

tion, maintenance, and repair occupations; (8) Production occupations; and (9) Transportation

and material moving occupations.26 For brevity, in what follows, we refer to these occupations

simply as Managers, Professionals, Service, Sales, Office, Construction, Repair, Production, and

Transportation, respectively.

We calibrate some of the parameters in our model exogenously to standard values in the

literature. We take a period in our model to represent a year and workers discount the future

at rate β = 0.95, a standard value for an annual model. We set the risk aversion parameter to

2, a usual value in the macroeconomics literature. Workers have an stochastic lifetime with a

probability of exiting the labor market (due to death, disability, non-participation decisions) of

3% per year. Then, on average, individuals in the model work for an average of 33 years.

The computational strategy using the dynamic hat algebra of Proposition 4 requires that we

map certain endogenous variables of the model in the initial period directly to moments in the

data. We now describe in detail how we proceed.

In our model, workers start their lifetime and enter the labor market with a level of human

capital and earnings that is on average lower than that of older workers. We map the average

earnings and occupational employment of the entering cohort (variables θ0
0 and H0

0 ) to those of

workers with ages between 22 and 30 years in the PSID data for all years before 1980. Table 2

shows the distribution of the entering cohort over occupations and their human capital. Relative

to older workers, a much lower fraction of the new workers enters in managerial occupations (7%

vs. 14%) and higher fractions enter in production, office and construction. The implied human

capital levels H0
0 are also remarkably lower, as we discuss below.

Table 2: U.S. in the 1970s: BGP Shares of Young Workers and Human Capital Across Occupations

entering cohort
Managers Profess. Service Sales Office Constr. Repair Production Transport

Workers (θ0
0): 0.07 0.13 0.12 0.05 0.15 0.08 0.05 0.21 0.13

Human Capital (H0
0 ): 0.08 0.14 0.08 0.05 0.14 0.09 0.06 0.22 0.13

Along the BGP, workers’ earnings grow at rate GA×GH in our model. Then, using data only

on the growth rate of earnings, we cannot identify these two components separately. However, we

assume that the human capital of the entering cohort in the BGP does not grow, thus the only

25Our model is very tractable and the computational demands at this level of disaggregation are very low. While
we would like to substantially increase the numbers of occupations we use, the lack of suitable data prevents us
from doing so.

26We exclude farming, fishing, and forestry occupations, because they account for a minimal share of U.S.
employment and the PSID includes very few observations in the sample. We also exclude all military occupations.
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source of earnings growth for the entering cohorts is the growth rate of wages, i.e. GA. We use

the growth rate of earnings of workers between 22 and 30 to calibrate GA = 1%.27

Then, using the PSID data for all workers between 22 and 65 years old, we estimate the yearly

occupational mobility matrix (variable µ−1 in the model) using the Poisson Maximum-Likelihood

methods proposed by Silva and Tenreyro (2006).28

Table 3 reports the estimated matrix µ for the U.S. economy in the 1970s. As expected, there

is substantial persistence in occupation choices, as can be seen in the diagonal of the estimated

matrix µ which exceedingly dominates the off-diagonal terms. There is also substantial variation in

the degree of persistence across the different occupations. On the upper end, 88.4% of production

workers remain in those occupations for the following year. On the lower end, just 76.5% of sales

workers stay in those jobs from one year to the next.

Table 3: U.S. in the 1970s: Workers Occupational Transition Matrix µ−1

From \To Managers Profess. Service Sales Office Constr. Repair Production Transport

Managers 0.88 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.02
Profess. 0.02 0.86 0.02 0.01 0.02 0.01 0.01 0.02 0.02
Service 0.02 0.02 0.88 0.01 0.02 0.01 0.01 0.02 0.02
Sales 0.03 0.03 0.03 0.76 0.03 0.02 0.02 0.04 0.03
Office 0.02 0.02 0.02 0.01 0.85 0.01 0.01 0.02 0.02
Constr. 0.03 0.03 0.03 0.01 0.02 0.79 0.02 0.03 0.03
Repair 0.03 0.03 0.03 0.01 0.02 0.02 0.81 0.03 0.03
Production 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.88 0.02
Transport 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.87

Similarly, we estimate the matrixM, using the information on earnings dynamics for occupa-

tional switchers and stayers. Consistent with the BGP in our model and the previous discussion

on the calibration of parameter GA, unitary wages are all growing at rate GA in the BGP. As

is usually the case with Roy models, we cannot distinguish the (relative or detrended) level of

unit wages and the total number of efficiency units of labor (or units of human capital) across

occupations since observed earnings is the product of both. We proceed by normalizing the vector

of detrended unitary wages to be all equal to one and estimate the matrix M−1 by the product

of the matrix of average earnings changes for occupational switchers and stayers by occupation

and the matrix µ−1 discussed before, as implied by our model.29 The estimation of the matrix

of average earnings changes uses the same data and estimation procedure used in the estimation

27For this we use data from the CPS since it has a much larger sample size and we do not need the panel
dimension or information about occupations. Since the economy faces several deep recessions in the late 70s and
early 80s, we use the average growth rate in earnings for the years 1983 to 1989.

28In this way, the small size of our sample for some transitions would have less influence in our estimated moments
than on the estimates directly using shares from the data, i.e., using bin estimators. We obtain similar results using
a logit estimator as in Kambourov and Manovskii (2008).

29 This normalization on the vector of (relative or detrended) wages is inconsequential for the results since any
other normalization for wages would lead to a different level of the individual components of the vector of human
capital H.
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of the matrix of occupational switching µ−1. To remove the effect of wage growth from GA we

divided the matrix of average earnings changes by it. Table 2 reports the matrix M−1 estimated

from the data in the initial BGP.

Table 4: U.S. in the 1970s: Human Capital Occupational Transition Matrix M−1

From \To Managers Profess. Service Sales Office Constr. Repair Production Transport

Managers 0.89 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02
Profess. 0.02 0.89 0.02 0.01 0.02 0.01 0.01 0.02 0.02
Service 0.02 0.02 0.90 0.01 0.02 0.01 0.01 0.02 0.02
Sales 0.04 0.03 0.04 0.78 0.03 0.02 0.02 0.04 0.03
Office 0.03 0.02 0.02 0.01 0.87 0.01 0.02 0.03 0.02
Constr. 0.03 0.03 0.03 0.01 0.02 0.81 0.02 0.03 0.03
Repair 0.03 0.02 0.03 0.01 0.02 0.02 0.82 0.03 0.03
Production 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.89 0.02
Transport 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.88

As expected, there are similarities between the matrices M−1 and the matrix µ−1. However,

recall thatM−1 is not a stochastic matrix. Moreover, notice that the ratio between each entry of

the matrixM−1 with the corresponding entry of the matrix µ−1 gives an estimate of the expected

(average) evolution of human capital for the occupational switchers, conditional on switching. The

range for this ratio is between 0.91 and 1.14.

From the estimated transition matrices µ−1 andM−1, together with the distribution of employ-

ment and human capital of young workers (entering cohort) over occupations and the expressions

in Proposition 1, we can compute the BGP shares of workers, θ0, and of aggregate human capital,

H0, distributed across occupations. Note that, since earnings grow over the lifetime of individuals,

the level of human capital of all workers is, on average, higher than that of the entering cohort.

Table 5 shows these estimates.

Table 5: U.S. in the 1970s: BGP Shares of Workers and Human Capital Across Occupations

Managers Profess. Service Sales Office Constr. Repair Production Transport
Workers (θ0): 0.14 0.12 0.15 0.04 0.11 0.06 0.06 0.18 0.13
Human Capital (H): 0.42 0.37 0.41 0.11 0.30 0.16 0.18 0.47 0.34

We can informally test the assumption that the economy is initially in a BGP by comparing

the actual data on employment shares, θ0, and earnings share –or share of human capital by

occupation– with those implied by the model using the expressions in Proposition 1 together with

the estimated transition matrices and the moments for the entering cohort. Figure 7 provides the

two comparisons. We can see that the allocations in the data and the ones implied by the mobility

matrices are not only very highly correlated but also of roughly the same magnitude as they lay

very close to the 45-degree line.

The parameter α directly affects the dynamics of earnings and, other things equal, has a direct

incidence on the amount of earnings inequality in the cross-section of all workers in the initial
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Figure 7: Data vs BGP implied allocations
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BGP. We assume a value of 13 which, for values of λ close to one, implies that permanent earnings

shocks at the individual level do not have a large variance, consistent with the empirical literature

on earnings dynamics (Lillard & Willis, 1978; MaCurdy, 1982).30 In particular, in our model,

the ε shocks will have a permanent effect on earnings. The variance of this permanent income

shock given a value of α = 13 is 0.01, which is very close to the estimates in Heathcote, Perri,

and Violante (2010) for the periods before 1980.31 Over time, however, the accumulation of these

shocks can generate substantial inequality in the cross-section. In the next subsections we discuss

how much initial inequality we get given our our calibration for α and other parameters.

Finally, as we discuss in Appendix B, our dynamic hat algebra method requires that we cali-

brate the ratio of current vs permanent income, Φj
0 for the initial BGP. Given our normalization

for wages in the initial BGP, we can compute values for Φj
0 as functions of µ−1 andM−1, together

with parameters β, α, and γ.

We now describe the calibration of parameters related to investment and production. To

simplify the analysis, we take the (gross) real interest rate, Rt/Pt, to be exogenous (small open

economy assumption) at the value of (β−1 × G1−γ
A ) = 1.05% per year.32 We set the depreciation

rates of structures and investment to be δK = 0.05 and δM = 0.125, which are the values used by

Greenwood et al. (1997); Krusell et al. (2000). Moreover, we follow those authors and calibrate the

30Note that, this large literature on random income processes abstracts from selection of workers over occupations
due to comparative advantage, and from selection over most favourable shocks. We do account for this in our work.

31See Figure 18 in Heathcote et al. (2010), where the estimate of the variance of permanent income shocks, in
levels, hoovers around 0.01.

32The small open economy assumption implies that investment of structures and machines will be perfectly elastic.
Note however, that the rental rate of machines will respond to changes in the price of equipment, ξMt , changing
the total number of machines used in production. In the next subsection we discuss the exogenous changes in the
price of equipment we use in our model.
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share of structures in production, ϕ, to be 0.13. Last, we calibrate the elasticity of substitution

of different occupations in production, ρ to be one, which is consistent with estimates in Goos et

al. (2014).33

Similar to the problem of the worker, our quantitative strategy requires that we obtain values

for the shares πM,j, πH,j of machines and labor in the value added of each occupation, and also

the share of each occupation in the non-structure value added, %j. We can use the equilibrium

conditions of our model to link these endogenous variables with the data. First, note that in our

model the total payments to labor in occupation j in the initial BGP relative to all income is,
wj0H

j
0

P0 Y0
= (1− ϕ) %j0 π

H,j
0 . Consider the following decomposition,

wj0H
j
0

P0 Y0

=

(∑J
k=1(wk0 H

k
0 )

P0 Y0

)
wj0H

j
0∑J

k=1w
k
0 H

k
0

.

The first term on the right equals all the payments to labor relative to all income in the economy,

i.e. the labor share. The last term is the share of occupation j earnings in all earnings. In the

data, the labor share in the 1970’s is around 0.66 and our calibrated value for ϕ is 0.13. Thus, we

can use the share of occupation j in total earnings from the data to get,

%j0 π
H,j
0 =

(
0.66

0.87

)
wj0H

j
0∑J

k=1w
k
0 H

k
0

.

Unfortunately, we cannot identify separately these two variables using only this moment. Since

both of them are a share, each has to be between zero and one, and the sum of %j over occupa-

tions has to be one. We make the assumption that in the initial BGP, πH,j0 = 0.66/0.87 for all

occupations.34 Therefore, under this assumption, the share of earnings of occupation j directly

identifies the share of occupation j value added in total production.

Table 6 contains all the information discussed in this section about the calibration of the

parameters of the model or the value of some variables in the initial equilibrium. The last piece

of information not discussed so far is the calibration of the parameters νj which, in the aggregate,

directly affect the elasticity of substitution between labor and machines in production. The next

section discusses the calibration of these parameters.

33While Goos et al. (2014) model is different from ours, we performed some robustness checks for alternative
values of this parameter. Critically, the value of ρ is not overly important, but it must be that for a given change
in factor prices is easier to substitute factors of production than to substitute occupations. Our parameter values
are always on this region.

34While the share of labor and machines in each occupation may be different in the data, the incidence of
machines and automation technology in 1970s was arguably low. If so, it would hardly explain variations in the
output shares across the different occupations, which would support our assumption.
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Table 6: Summary of calibration strategy & parameters

parameter / variable value
time period: 1 year
No. of occupations J 9
yearly model, discount factor β 0.95
labor market exit prob. 0.03
risk aversion γ 2
shape Frechet workers α 13

exogenous growth rate of labor prod. AH,jt 1.01
employment share of new cohort θ0

0 see Table 2
human capital of new cohort H0

0 see Table 2
occupational mobility matrix µ−1 see Table 3
human capital transition matrix M−1 see Table 4
employment share of all workers θ0 see Table 5
human capital of all workers H0 see Table 5

ratio of current vs permanent income Φj
0 see Appendix B

depreciation rate machines δM 0.125
depreciation rate structures δK 0.05
share of structures ϕ 0.13
elasticity between occupations ρ 1.00
small open economy - real rate Rt/Pt β−1(GA)γ

share of occ j value added %j0 (Hj
0 /
∑

kH
k
0 )

share of labor in occ j value added πH,j0 0.76 ∀ j

5.2 Task-biased Technological Shocks

Having set up the economy in a BGP as of 1980, we now use the model to capture the response

to a long-lasting episode of task biased (tbtc) that may be asymmetric across the workers in

different occupations. To this end, we use the information on the relative price of equipment to

calibrate the changes in ξMt . Recall that the Euler equation for the investment in equipment, (32),

implies an inverse relationship between the rental rate of machines rMt and investment-specific

productivity ξMt . Thus, we follow the literature on skill-biased technical change (Greenwood et

al., 1997; Krusell et al., 2000) and use data on the price of the investment in equipment relative to

the price of consumption to calibrate the evolution of task biased technology from 1980 to 2010.

This is the unanticipated tbtc shock we feed to our economy. We assume perfect foresight for

individuals in the economy. Specifically, we start the economy in 1980, our time t = 0, assuming

that up to that date, all agents had not anticipated the change in future price of investment.

Then, at t = 1, all agents receive the information of the sequence of current and future tbtc

changes and act accordingly, i.e., workers choose occupations according to the new equilibrium

sequence {vjt}∞t=1. Appendix B describes in detail our formulation of the equilibrium conditions of

the economy in relative differences from the initial BGP.

Figure 8 shows the evolution of the price of equipment, relative to the price of consumption.
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Throughout all the sample, the price of equipment presented a downward trend. Before 1980, the

relative price of equipment was falling at a rate of roughly 1.5% per year, while after 1980, it fell

at a rate of 3% per year. Since our economy is in a BGP before 1980 and the price of equipment

in the model is constant, the specific shock we feed to our model is a decrease in ξMt of 1.5% per

year, for 40 years, after which it levels-out. This matches the differential in the evolution of the

price of equipment before and after 1980.

Figure 8: Evolution of the price of equipment in the United States (1980-2010)
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As we mention in the previous section, parameters νj govern the degree of dispersion in the

productivity of labor and machines in the production of tasks in the different occupations and are

directly linked to the elasticity of substitution of labor and machines in production. Given that

we feed a single shock that is common across all occupations, ξMt , the response of occupational

employment to this shock in the different occupations will depend on (1) how costly is for workers

to switch to other occupations, i.e. the elasticity of labor supply across occupations, which is

goverened by different parameters of the worker’s problem, and (2) how easy or difficult it is for

firms to substitute across different factors of production, which is governed by different parameters

of the firm’s problem, and in particular, νj. Given our shock, we calibrate νj to approximate, with

the model, the observed changes in the shares of occupational employment between 1980 and

2016.35

Table 7 shows the observed changes in employment across the occupations we study, both in the

data (column 2) and in the model (column 3). The last column in the table shows our calibrated

value for parameters νj. A few important patterns emerge. First, the values of νj tend to be

very different across occupations, ranging between a high elasticity of substitution between labor

and machines in production occupations, to much lower values in occupations with a non-routine

component. While the aggregate production function in Proposition 3 admits values for ν greater

35To estimate the elasticity of substitution between different factors of production, Krusell et al. (2000) also use
information on the evolution over time of the share of earnings of different factors. Albeit less formal, our approach
to obtain values for νj is similar.
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than −1, our microfoundation restricts the range of νj to be positive. However, the increase in

the share of employment of professional and technical occupations over the last few decades was

so large that our model, given the only shock we analyze, can only reconcile such an increase with

a substantial complementarity between labor and capital in that occupation.36

Table 7: Employment changes and elasticity of substitution

Occupations data Model νj
Managers 3.1 3.9 0.08
Professionals 8.3 5.8 -0.90
Services 3.7 4.2 0.05
Sales 1.8 1.1 0.10
Office & Admin -4.9 -3.6 2.00
Construction -0.6 -0.8 1.00
Repair & Maint -0.9 -1.1 1.50
Production -9.1 -8.0 2.50
Transportation -1.4 -2.3 1.50

Note: changes in the data are between 1980 and 2006. Com-

puted using CPS monthly data for all employed workers be-

tween ages 22 and 65 years old.

5.3 Aggregate effects of task biased technological change

Through the lens of our model, the data clearly shows that the tbtc shocks had asymmetric effects

across the different occupations. Figure 9 shows the dynamic evolution of the employment shares

of the four broad occupation groups induced by the calibrated tbtc shock, which complements

the information of Table 7. The largest impact is in routine-manual occupations, composed of

construction, installation and repair, transportation and production, with a sharp reduction in

the employment share of over 12 percentage points, which, as expected, is consistent with the

changes observed in the data since 1980 since these are targets of our calibration. Similarly, the

combined employment share of routine-cognitive occupations, such as sales and administrative

support also falls, but the decrease in this case is more moderate, around 2.5 percentage points.

On the other hand, non-routine occupations, which in the data are typically the polar opposites

in terms of wage levels, see their employment shares increase. The increase is more pronounced

for the cognitive non-routine occupations such as management, business and professional, with

a combined share almost 10 percentage points higher due to the task-biased shock. Non-routine

manual occupations such as personal services see their share go up by 4 percentage points due to

the same shock.

36Alternatively, we could introduce an increase in the productivity of labor in those occupations, however we
decided to keep the analysis simple and have only one exogenous shock that is common across all occupations.
A different avenue would be to introduce different education groups of workers with an exogenous increase in the
supply of college educated cohorts. In the present work we also abstract from this alternative as well, but the
model can be extended as we show in Appendix C.
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Figure 9: Evolution of employment shares by broad occupation groups
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These changes in employment across occupations in the model are the result of two different

forces: (i) the responses of new cohorts that enter every period, and change their choice of initial

occupations; and (ii) the response of older workers, as they change their behavior in terms of

occupation mobility. In Table 8 we separate the contribution of the two forces, i.e. how much

can be accounted by the change in the behavior of new cohorts if older workers do not modify

their occupational choices, and how much can be accounted by the change in behavior of the older

workers if the new workers do not adapt.

Table 8 shows the initial employment distribution (column 2) and the distribution in the

model at period 40, i.e. the end of the tbtc shock (column 3.) In column 4, we account for

the accumulated contributions of the responses of the entering cohorts, keeping the behavior of

older cohorts as before the shocks. In column 5, we report the contribution of the changes in the

mobility patterns of workers once they have entered, i.e. changes in matrix µ. We can see that the

bulk of the changes in employment share is the result of the changes in mobility of workers once

they have entered labor markets. It is worth noting that those changes do not require a drastically

different matrix µ. Small changes in the flows workers between occupations, due to small changes

in µ, accumulate over time and lead to substantial changes in the stocks.

The recent literature (Acemoglu & Restrepo, 2018; Karabarbounis & Neiman, 2013) argues

that the fall in the labor share in the United States (and around the world) over the last few

decades may be driven by technological changes that are biased towards a more intensive use of

machines in production. According to the Bureau of Labor Statistics, the labor share of the U.S.

nonfarm business sector fluctuated around 0.66 in the 1960s and early 1970s, but since then it
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Table 8: Contribution of Responses of Old and New Cohorts to Employment Changes

Initial Final Contribution of Changed Behavior
Occupations share share New Cohorts Only Old Cohorts Only
Managers 14.2 18.1 0.3 3.6
Professionals 12.3 18.0 0.7 5.0
Services 15.1 19.3 0.5 3.7
Sales 4.3 5.4 0.1 1.0
Office & Admin 11.1 7.6 -0.4 -3.2
Construction 5.9 5.8 0.0 -0.1
Repair & Maint 6.2 5.1 0.0 -1.0
Production 17.8 9.9 -1.0 -7.1
Transportation 13.2 10.9 -0.1 -2.1

has trended down towards 0.57 by 2016. This is a 9 percentage point difference.37 In our model,

the drop in the labor share is even more pronounced, around 14 percentage points. As technology

reduces the rental rate of machines, a larger share of tasks is performed by machines. This increase

is larger in occupations with a higher value of νj, as labor and capital are more sustitutable.

In our economy, 40 periods after the shock total output is 75% higher than in the economy

with no shock. An important question arises: If machines are receiving a larger share of output,

are workers worse-off? Figure 10 provides a partial answer. It shows the evolution of aggregate

earnings (left panel) and average earnings (right panel) by broad occupation groups. Total earnings

increase across all occupations, and more so in the non-routine groups. However, this is largely

the result of higher number of workers in those occupations, as can be inferred by the evolution

of average earnings. Importantly, the dispersion in average earnings is more compressed across

occupations because workers self-select according to comparative advantage, and tend to stay in

their current occupations even if the demand does not increase at the same pace as in other jobs.

In general, the expansion of non-routine occupations is driven by workers with weaker comparative

advantage there, pushing up the average earnings in the occupations from which they leave and

bringing it down in the occupations to which they arrive. This effect will be reflected in earnings

inequality as we discuss next.

5.4 Effects of Task-biased Innovations on Inequality

We now use the model to assess the impact of task-biased innovations on income distribution. To

this end, we simulate histories of individual earnings for a large panel of workers. As technological

innovations change unit wages, the ensuing changes in occupational decisions of both new and

active workers shape the response of the aggregate and individual evolution of human capital.

As we discussed in Section 3, individual earnings depend on all the history of ε shocks and

the occupation decision of workers. To compute the history of earnings for individuals, we need

37We obtain the data for the labor share from FRED (https://fred.stlouisfed.org/series/PRS85006173). Accessed
on October 2019.
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Figure 10: Evolution of aggregate and average earnings by broad occupation groups
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Note: the left panel shows the evolution of aggregate earnings in each broad occupation group

after the tbtc, relative to the initial BGP. Similarly, the right panel shows the evolution of

the average earnings.

to recover the parameters λj and the matrices τ and χ, and to do so, we use the equilibrium

conditions in the initial BGP.38 Figure 11 shows the recovered level for those parameters, where

we assume that the diagonal of the matrix τ , shown in panel (a), is equal to one.39

From Figure 11, it is clear that the model requires substantial amount of heterogeneity in order

to reconcile the earnings changes and occupational mobility patterns of workers in the initial BGP.

First, notice that some occupation switches can be very costly in terms of human capital (e.g.:

switching from management to sales) while others are less costly (e.g.: from sales to production or

management.) In terms of non-pecuniary terms, recall that with γ = 2 the values vj are negative,

so a low value is of χ is a positive for utility. Hence, the utility costs of moving from professional

occupations to anything else, except perhaps administrative jobs, seem substantial.

Similarly, Table 9 contains information on the scale parameters λj, which affect the scale of

the distribution of ε shocks, with a permanent effect on income and human capital dynamics, and

parameters τ 0 and χ0 affecting the distribution of human capital and employment decision over

occupations for the entering cohort.40

With this information, we simulate employment histories for workers and compute measures

of income inequality.41 Figure 12 shows the distribution of earnings in the model in the initial at

the beginning of the period (1980). The variance of log-earnings in that period is 0.49, consistent

with the data. Moreover, the distribution of earnings has a “fat” right tail, which is inherited from

the Frechet distribution and the persistent nature of the ε shocks and the selection over those and

over occupations.

38Proposition 4 indicates that it is not necessary to recover the levels of some parameters, particularly λj and
the matrices τ and χ, to solve for the equilibrium dynamics of aggregate variables neither for the baseline nor
counterfactual economies.

39We make this normalization since the diagonal of matrix τ cannot be identified separately from the value of
the vector λ.

40We normalize the first element of χ0.
41We simulate a panel of 40,000 individuals over 200 periods which we use in all our computations in this section.
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Figure 11: Human capital transferability and Non-pecuniary mobility costs
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Table 9: Parameters affecting earning dynamics

Occupations λ τ 0 χ0

Managers 0.953 1.043 1.000
Professionals 0.975 0.923 0.914
Services 0.963 0.579 1.675
Sales 0.952 0.806 1.145
Office & Admin 0.967 0.750 1.224
Construction 0.952 0.895 1.104
Repair & Maint 0.948 0.964 1.055
Production 0.952 0.933 1.241
Transportation 0.952 0.824 1.349

Task-biased technical changes affect the evolution of earnings due to changes in wages in

different occupations, occupational choices and the dynamics of human capital. Figure 13 shows

that during the 40-years episode of tbtc, inequality in the economy almost doubles relative to

the economy without the shock. The change in relative terms subsides over time and completely

halts some years after the shock stops. In absolute terms, tbtc increase both average earnings and

absolute dispersion. Yet, the impact of tbtc goes beyond the absolute levels of incomes, since,

as we have emphasized in this paper, the rate at which workers accumulate earnings depends on

the endogenous allocation of workers and human capital across occupations. In our calibrated

economy, the long-run growth rate in only driven by the exogenous change in the productivity of

labor, GA, which we set at 1%. Yet, the growth rate of human capital over a worker’s life cycle

does change and after the tbtc shock the rate of human capital accumulation increases. Thus

aggregate GDP not only grows due to the aggregate technological change, but also due to an

increase in the total accumulation of human capital.

As we discussed in the previous section, the selection of workers over occupations has an effect

on inequality. In particular, as the workers with the least strong comparative advantage across all

54



Figure 12: Initial distribution of earnings in 1980
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Note: computed using model simulations for the initial period.

occupations are the ones that will respond more to the changes in economic conditions. That is,

workers relatively less skilled in routine occupations will tend to switch to non-routine occupations,

thus lowering the amount of inequality in routine occupations and increasing it in non-routine ones

(in relative terms). Figure 14 shows exactly this pattern. The different panels show the evolution

of inequality within each occupation (note that the wage per unit of human capital is the same for

workers in each occupation), where panels group occupations in the four broad categories. The

top two panels show the evolution of the variance of earnings for cognitive non-routine occupations

(top-left) and manual non-routine occupations (top-right). The two panels on the bottom show

the same information but for cognitive routine occupations (bottom-left) and manual routine

occupations (bottom right). While the effect of the these “more mobile” workers on inequality

is not overly large, the figure does show that inequality towards the end of the studied period is

higher in non-routine occupations than in routine.

5.5 The role of the elasticity of labor supply and labor demand

In this section we study the importance of labor supply factors and labor demand factors in

accounting for job polarization and inequality. Clearly, the effects job polarization and inequality

will depend on how easy or difficult is for workers to switch occupations. In an extreme case, if

workers cannot switch occupations, we would not see a change in the share of employment across

occupations, but most likely inequality would be higher. These are the labor supply factors. On

the other hand, if all the different factors of production can easily be substituted in the production

process, then all occupations would be affected by tbtc, and in this case we would expect a much
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Figure 13: Evolution of earnings inequality
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lower change in the share of employment across occupations and a lower increase in inequality.

These are labor demand forces.

Figure 15 shows the evolution of inequality for our baseline economy and for two counterfactual

economies. The first is an economy where all the elasticity of substitution between machines and

labor in each occupation j, which is governed by parameter νj, is the same. We pick the value of

νj = 0.5. Relative to the baseline, earnings inequality in this economy is lower for two reasons,

on the one hand, the effect of tbtc is symmetric across occupations, and wages in all occupations

change by the same magnitude. Because of this, the dynamics of human capital are different,

with a lower depreciation of human capital due to the lower amount of reallocation, and also, to a

slower pace of accumulation of human capital, which tends to occur in routine occupations. Note

that, in this economy, there is no job polarization as the effects of technology is symmetric across

different occupations leading to no net changes in employment for the different occupations.

The second case we explore is an economy where we restrict workers from moving. In our

exercise, we keep the evolution of wages identical as in the baseline economy and focus only on the

effects of human capital accumulation. The first effect, which cannot be seen in the figure given

that all economies are normalized by an economy with no tbtc shock, is that if we restrict mobility,

the overall accumulation of human capital is much lower. In this case, we prevent workers from

selecting their most favourable comparative advantage shocks ε, which on average translate into a

lower human capital accumulation. The second pattern is that inequality in this economy, is larger

than in the baseline case. In this economy, workers cannot “escape” the losses from automation

nor move into jobs for which they have a better productivity. The compression of earnings due to

self-selection that is typically present in Roy models is not operative in this case, which leads to a

higher level of inequality. Note that, similarly to the previous case, as workers cannot move, the
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Figure 14: Inequality across occupation groups
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lution of the variance of earnings between the economy with TBTC and the economy

with no change in technology.

economy does not exhibit job polarization either.

Clearly, in an economy where workers can reallocate across occupations with no frictions,

inequality will be very compressed.

Overall, these exercises suggest that supply factors, which in our case mean mobility frictions,

tend to exacerbate earnings inequality, but reduce the amount of reallocation across occupations

and polarization. On the other hands, demand factors, like a more similar way to substitute

factors of production in the different occupations, tend to reduce the amount of inequality, but

also lead to a lower labor reallocation across occupations, and thus a lower job polarization.
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Figure 15: Evolution of earnings inequality
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6 Conclusion

We develop a dynamic Roy model of occupational choice with human capital accumulation and

use it to explore the general equilibrium effects of new technologies on the labor market. In our

model, infinitely-lived workers can switch occupations in any period to maximize their lifetime

utility. In our setting, a worker’s human capital is driven by his labor market choices, given

idiosyncratic occupation-specific productivity shocks and the costs of switching occupations. We

first characterize the equilibrium assignment of workers to jobs. A key result is that the resulting

evolution of aggregate human capital across occupations ultimately determines the long-run rate

of growth of the economy. We then use the model to quantitatively study how worker’s individual

occupation choices change with the introduction of new technologies, and in turn how this choices

shape the equilibrium allocation of workers to different jobs, the dynamics of aggregate human

capital, the behavior of earnings inequality, the evolution of the labor share, and the welfare of

the different workers in the economy.

The paper has a number of methodological contributions. First, we fully characterize the so-

lution of the recursive problem of a worker under standard CRRA preferences when the worker

is subject to a large number of labor market opportunities shocks in every period affecting her

comparative advantage in different occupations. Thus, we bridge recent quantitative work that

uses static assignment Roy models with extreme-value shocks with the standard recursive mod-
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els for households in macroeconomics. In this way, our model generates transition probabilities

across occupations over time. Second, we fully characterize the asymptotic behavior of aggregate

economies implied by the individual dynamic occupation choices of workers. For any given vector

of skill prices, we show that the economy converges to a unique invariant distribution of workers.

Although the Roy model has been studied and used in great length, we uncover important new

features which are present only in a dynamic context. We show that, generically, the reallocation

of workers to occupations combined with the accumulation of occupational human capital leads

to sustained growth over time for the economy. The growth rate in our model is endogenously

determined by the equilibrium occupational choices, and thus, changes in economic conditions

that alter worker’s choices affect the long-run growth rate of the economy. Third, we embedded

the workers’ problem in a fairly rich general equilibrium environment where different types of

workers are allocated to different tasks in production. We derive a very transparent and tractable

aggregation that arises from the assignment of workers to tasks. Then, we show the existence of

a competitive-equilibrium balanced-growth path, and for a simple version of our model we can

also characterize uniqueness. Fourth, by incorporating two forms of physical capital, we provide

a quantitative framework to study the impact of automation and other task biased technologi-

cal improvements on the earnings of different occupations. Our model of production and tasks

generates an intuitive expression that directly links the labor share of the economy with wages,

rental rates and the productivity of different types of labor and capital, allowing us to study the

effects of technology on the labor share of the economy. Fifth, we extend recent dynamic-hat-

algebra methods and show they can be used with more general preferences (CRRA) and with

human capital accumulation. As with other hat-algebra methods, the advantage is a substantially

reduced set of calibrated parameters needed for the quantitative application of the model. Sixth,

we discuss a variety of relevant extensions of our baseline model, ranging from workers’ age and

ex-ante heterogeneity, endogenous on-the-job training and occupation-specific automation.

Using our model we make a number of substantial contributions. Mapping our model to the

moments observed in the 1970s for the U.S. economy, we account for the changes in employment

across occupations and the increase in earnings inequality that arise from task biased technological

advances. An important change observed in U.S. labor markets in the past few decades is the

polarization of skills in the labor market. That is, the decline of employment in middle-skill

occupations, like manufacturing and production occupations, and the growth of employment in

both high and low-skill occupations, like managers and professional occupations on one end, and

assisting or caring for others on the other. Using our model we show how some task biased

technical improvements can jointly explain the increase in polarization, earnings inequality and

occupational mobility in U.S. labor markets.

In addition, our dynamic model highlights the long-lasting impact of permanent, but once-

and-for-all technological changes. Indeed, in our dynamic setting, once-and-for-all changes in

automation or other technological changes can lead to sustained growth effects. Our quantitative
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exercise highlight how this growth effect changes the conclusion on earnings inequality and welfare.

We emphasize that the welfare and inequality implications for technological changes can be vastly

richer than those obtained in other settings as they originate not only from changes in skills prices

in each period but also on changes in the equilibrium growth rate of earnings. Thus, on the one

hand, the positive impact on some workers is not only due to higher level of earnings but also from

a faster growth. On the other hand, some workers can be worse-off due to lower levels of earnings

and a higher rate at which they change occupations. These aspects are fully incorporated in our

exercises.

Our theory opens a number of exciting avenues for future research. International trade, off-

shoring, and migration policies, can alter the demand for workers in different occupations in

an asymmetric fashion. Our model highlights how these type of changes affect not only the

distribution of workers and human capital in different occupations, but also affect the rate at

which workers accumulate human capital over their life cycle, and depending on parameters, may

affect the long-run growth of the economy.
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A Proofs

We assume that 0 < w ≡ minj
{
wj
}
< w̄ ≡ maxj

{
wj
}
< +∞. As in the text, denote the flow utilities as

uj ≡ Υj (wj)
1−γ

1−γ for γ 6= 1 and uj ≡ Υj + log(wj) for γ = 1. Also, denote u = minj u
j and ū = maxj u

j . For all
values of γ ≥ 0, the verify conditions on τj,` and ε` such that we ensure the existence of upper and lower bounds
−∞ < v < v̄ < +∞, such that the relevant range of normalized conditional expected values remain within those
bounds, i.e. v ∈ [v, v̄]

J
. The bounds v, v̄ depend on the utility curvature γ as we explain in detail below.

Proof. Lemma 1: Existence and Uniqueness BE. For any vector v ∈ RJ , define the operator T : RJ → RJ

so that, for each entry j:

(Tv)j = uj + β Eε max
`

{
v` (τj`ε`)

1−γ
}

.

Consider first the case 0 ≤ γ < 1. Here, uj > 0, and the relevant values of v are all positive. Denote also
Φ̄ = maxj Φj . In this case, we can define v = 0J , the J × 1 vector of zeros, as a lower-bound. As an upper-bound,
let v̄ = 1J× ū

1−βΦ̄
, i.e. the vector with its J entries equal to ū

1−βΦ̄
. We first confirm these bounds. Start by noticing

that T is monotone, i.e., if v1 ≥ v2 (pairwise,) then Tv1 ≥ Tv2. Next, notice that T v̄ ≤ v̄, since, for all j:

(T v̄)j = uj + β Eε max
`

{
v̄ (τj`ε`)

1−γ
}

≤ ū+ βΦj v̄ =
ū

1− βΦ̄
.

Finally, notice that, (T0J) > 0J , since for any j:

(T0J)j = uj + β Eε max
`

{
0× (τj`ε`)

1−γ
}

= uj > 0.

This proves that for any v ∈ [0J , v̄] then Tv ∈ [0J , v̄]. Let any v1,v2 ∈ [0J , v̄]. Then

‖Tv1 − Tv2‖ = max
j

∣∣∣∣uj + β Eε max
`

{
v1,` (τj`ε`)

1−γ
}
− uj − β Eε max

`

{
v2,` (τj`ε`)

1−γ
}∣∣∣∣

= βmax
j

∣∣∣∣Eε max
`

{
v1,` (τj`ε`)

1−γ
}
− Eε max

`

{
v2,` (τj`ε`)

1−γ
}∣∣∣∣

≤ βmax
j

∣∣∣∣Eε max
`

{
(τj`ε`)

1−γ
}∣∣∣∣max

`
| v1,` − v2,`|

= βΦ̄ ‖v1 − v2‖ .

This verifies that T is a contraction when βΦ̄ < 1. Using the distance function induced by the uniform norm,
‖v‖ = maxj

∣∣vj∣∣ , the space ([0J , v̄] , ‖·‖) is a complete metric space, and hence a unique fixed point of T exists and
is unique.

We next consider the special, case of γ = 1. In this case, uj ≡ lnwj , and the Bellman equation (4) becomes

V (j, h, ε) = uj + βmax
`
{Eε′V [`, h′, ε′]} . (43)

Following the same steps as when γ < 1, we now verify the hypothesis that EεV [j, h, ε] = vj +B lnh, for some B.
Taking expectations in both sides of (43), and using the law of motion for the accumulation of human capital (3),
equation (43) becomes:

vj +B lnh = uj + βEε

[
max
`

{
v` +B [ln (h) + ln (τj,`ε`)]

}]
.

Then, the hypothesis is confirmed with B = 1/ (1− β), and vj defined as a fixed point of the operator T : RJ → RJ



so that, for each entry j:

(Tv)j = uj + βEε

[
max
`

{
v` +

ln (τj,`ε`)

1− β

}]
. (44)

Conditions for existence and uniqueness of a fixed point v ∈ RJ are as follows. We first ensure that there are finite
lower and upper bounds. To this end, notice that the distribution of ε` is such that −∞ < Eε [max` {ln (τj,`ε`)}] <
∞. Then, the overly slack bounds can be set to:

v =
lnw + β

(
ln(τmin)

1−β + Eε[max`{ln(ε`)}]
1−β

)
1− β

,

v̄ =
ln w̄ + β

(
ln(τmax)

1−β + Eε[max`{ln(ε`)}]
1−β

)
1− β

.

Clearly, these bounds are overly slack and both are finite as long as τmin ≡ minj,` {τj,`} > 0 and τmax ≡ max {τj,`} <
∞, which we have assumed all along. It is straightforward to verify that the operator T defined by (44) maps the
rectangle [v, v̄] into itself and it is monotone. It is also straightforward to verify that as long as 0 < β < 1, then T
is a contraction on the complete metric space ([v, v̄] , ‖·‖).

Finally, consider the case of γ > 1. Here, all uj < 0, and the relevant values of v are all negative. In this case,
we can define the upper-bound to be v̄ = 0J , i.e. the J × 1 vector of zeroes; the lower-bound can be taken to be
v = 1J × u

1−βΦ̄
, i.e. the vector with its J entries equal to u

1−βΦ̄
. To confirm these bounds, first notice that for any

v ≤ 0, T v < 0J . In particular, (T0J) < 0J , since for any j:

(T0J)j = uj + β Eε max
`

{
0× (τj`ε`)

1−γ
}

= uj < 0.

Next, notice that Tv ≥ v, since, under the definition of Φj = Eε min`
{

(τj`ε`)
1−γ

}
and the assumption that βΦ̄ < 1,

for all j:

(Tv)j = uj + β Eε max
`

{
v (τj`ε`)

1−γ
}

= uj + β Eε max
`

{
(−v) (−τj`ε`)1−γ

}
= uj − β Eε min

`

{
(τj`ε`)

1−γ
}

(−v)

= ū+ βΦjv

≥ ū+ βΦ̄v =
ū

1− βΦ̄
.

The operator T is obviously monotone and the condition βΦ̄ < 1 ensures that it satisfies discounting.
Proof. Lemma 2: Derived Distributions: Write FX (x) = Pr [X ≤ x], where x > 0. Consider first the case
γ < 1. Then:

FX (x) = Pr [X ≤ x] = Pr
[
ε1−γ ≤ x

]
= Pr

[
ε ≤ (x)

1
1−γ
]

= Fε
(

(x)
1

1−γ
)

= e
−
(

(x)
1

1−γ
λ`

)−α
= e
−
(

x

(λ`)
1−γ

)−[ α
1−γ ]

,

which is the cdf of a Frechet distribution with scale (λ`)
1−γ

> 0 and curvature α
1−γ > 1. Consider now the case

where γ > 1. Then,

FX (x) = Pr [X ≤ x] = Pr
[
ε1−γ ≤ x

]
= Pr

[
ε ≥ (x)

1
1−γ
]

= 1− Pr
[
ε < (x)

1
1−γ
]

= 1− e
−
((

x
λ`

) 1
1−γ

)−α
= 1− e−

(
x
λ`

) α
γ−1

,
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which is the c.d.f. of a Weibull distribution with scale (λ`)
γ−1

> 0 and curvature α
γ−1 > 0. Finally, consider the

case of γ = 1. Here x can be positive or negative. Anyway,

FX (x) = Pr [X ≤ x] = Pr [ln ε ≤ x] = Pr [ε ≤ ex]

= e
−
(
ex

λ`

)−α
= e−e

− [x−lnλ`]
1/α

,

which is the cdf of a Gumbel with location parameter ln (λ`) and shape parameter 1/α > 0.

Proof. Theorem 1: Worker’s Optimization Problems. We first prove the statement about the functional
form adopted by the value function that solves the BE. Second, we prove the statement on the functional form
for the switching probabilities. We skip the proof for existence and uniqueness since it follows from Lemma 1 as a
special case.

I. Functional Forms of the BE. As in the text, for all 0 ≤ γ 6= 1, define

Ωj` = τ
(1−γ)
j` v`.

We now solve for the expression Eε
[
max`

{
Ωj` (ε`)

1−γ
}]

and plug the solution in the formula for the value function

vj :

Eε

[
max
`

{
Ωj` (ε`)

1−γ
}]

=
J∑
`=1

∫ ∞
0

Ωj` (ε`)
1−γ ∏

k 6=`
Pr

[
εk <

(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f(ε`)dε`

=
J∑
`=1

∫ ∞
0

Ωj` (ε`)
1−γ ∏

k 6=`
F

[(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f(ε`)dε`

=
J∑
`=1

∫ ∞
0

Ωj` (ε`)
1−γ ∏

k 6=`
e
−
[(

Ωj`
Ωjk

) 1
1−γ ε`

λk

]−α
e
−
(
ε`
λ`

)−α ( α
λ`

)(
ε`
λ`

)−1−α
dε`

=
J∑
`=1

∫ ∞
0

Ωj` (ε`)
1−γ

e
−

∑J
k=1

((
Ωj`
Ωjk

) 1
1−γ 1

λk

)−α(ε`)
−α

α

λ`

(
ε`
λ`

)−1−α
dε`

=
J∑
`=1

∫ ∞
0

Ωj` (λ`)
α
e
−
[∑J

k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)α
]

(ε`)
−α

α (ε`)
−γ−α

dε`.

The first equality is by definition, the second holds since the ε shocks are i.i.d. and therefore the joint c.d.f. can
be written as the product of the marginals. The third, fourth and fifth equality hold by using the definition of the
c.d.f.s; the sixth groups all terms, and the last two steps result from regrouping and simplifying terms. Now, to
solve the resulting integral, change variable and define

z ≡
[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

]
(ε`)
−α

.

Therefore,

ε` = [z]
−1
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α

and dε` =
−1

α
[z]
−1
α −1

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α

dz.
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Substituting these three formulas in the last expression, we get:

Eε

[
max
`

{
Ωj` (ε`)

1−γ
}]

=
J∑
`=1

∫ ∞
0

Ωj` (λ`)
α
e
−
[∑J

k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)α
]

(ε`)
−α

α (ε`)
−γ−α

(dε`) (45)

=
J∑
`=1

∫ ∞
0

Ωj` (λ`)
α
e−z

[z]
−1
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α

−γ−α [z]
−1
α −1

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α

dz

=
J∑
`=1

Ωj` (λ`)
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

]−(γ+α)
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α ∫ ∞

0
e−z [z]

− (1−γ)
α dz

= Γ

(
1− 1− γ

α

) J∑
`=1

Ωj` (λ`)
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1−(γ+α)
α

, (46)

where the last line uses the definition of the gamma function. This expression is valid for all 0 ≤ γ 6= 1.
Now, consider the cases when 0 ≤ γ < 1, and Ωjk > 0. Since they are positive, we can directly take the terms

Ωj` as a common factors from the summation within brackets of (46) we get

Eε

[
max
`

{
Ωj` (ε`)

1−γ
}]

= Γ

(
1− 1− γ

α

) J∑
`=1

Ωj` (λ`)
α

[
(Ωj`)

−α
1−γ

J∑
k=1

(Ωjk)
α

1−γ (λk)
α

] 1−(γ+α)
α

= Γ

(
1− 1− γ

α

) J∑
`=1

(λ`)
α

(Ωj`)
α

1−γ

[
J∑
k=1

(Ωjk)
α

1−γ (λk)
α

] 1−(γ+α)
α

= Γ

(
1− 1− γ

α

)[ J∑
`=1

(
v`
) α

1−γ
(λ`τj`)

α

] 1−γ
α

,

where we have used Ωj` = τ
(1−γ)
j` v`, and, as claimed in the text

vj = uj + β Γ

(
1− 1− γ

α

)[ J∑
`=1

(
v`
) α

1−γ
(λ`τj`)

α

] 1−γ
α

.

Next, consider γ > 1. In this case, both vj and Ωjk are negative. Obviously, we can re-write expression (46) as

Eε

[
max
`

{
Ωj` (ε`)

1−γ
}]

= −Γ

(
1− 1− γ

α

) J∑
`=1

|Ωj`| (λ`)α
[
J∑
k=1

(
|Ωjk|
|Ωj`|

) α
1−γ

(λk)
α

] 1−(γ+α)
α

,

where |·| is just the absolute value function. Then, by following exactly the same steps for γ < 1, we obtain for
γ > 1 the expression

vj = uj − β Γ

(
1− 1− γ

α

)[ J∑
`=1

(
−v`

) α
1−γ

(λ`τj`)
α

] 1−γ
α

,

where we have used the fact that τj` > 0 for all j, `.
II. Switching Probabilities. Next, we characterize µj`, the probability that workers attached to occupation j
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switch to occupation `. As before, consider first the case of γ < 1. Then

µj` = Pr
[
Ωjk (εk)

1−γ
< Ωj` (ε`)

1−γ
]

for all k 6= `

= Pr

[
(εk)

1−γ
<

Ωj`
Ωjk

(ε`)
1−γ

]
for all k 6= `

= Pr

[
εk <

(
Ωj`
Ωjk

) 1
1−γ

ε`

]
for all k 6= `,

i.e. the direction of the inequality is preserved both times.The first time because we are dividing by Ωjk > 0 and

the second because the transformation (·)
1

1−γ is monotonically increasing. Consider next the case when γ > 1. Then

µj` = Pr
[
Ωjk (εk)

1−γ
< Ωj` (ε`)

1−γ
]

for all k 6= `

= Pr

[
(εk)

1−γ
>

Ωj`
Ωjk

(ε`)
1−γ

]
for all k 6= `

= Pr

[
εk <

(
Ωj`
Ωjk

) 1
1−γ

ε`

]
for all k 6= `.

i.e. the direction of the inequalities inside the probabilities is reversed twice: The first time as we are dividing by

a negative number, Ωjk < 0, and the second because the transformation (·)
1

1−γ is monotonically decreasing.
Therefore, for both instances

µj` =

∫ ∞
0

∏
k 6=`

Pr

[
εk <

(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f`(ε`)dε`

=

∫ ∞
0

∏
k 6=`

Fk

[(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f`(ε`)dε`

=

∫ ∞
0

∏
k 6=`

e
−
((

Ωj`
Ωjk

) 1
1−γ ε`

λk

)−α
e
−
(
ε`
λ`

)−α ( α
λ`

)(
ε`
λ`

)−1−α
dε`

=

∫ ∞
0

e
−

∑J
k=1

[(
Ωj`
Ωjk

) 1
1−γ 1

λk

]−α(ε`)
−α

α

λ`

(
ε`
λ`

)−1−α
dε`

= (λ`)
α
∫ ∞

0
e
−
[∑J

k=1

[(
Ωjk
Ωj`

) 1
1−γ

λk

]α]
(ε`)
−α

α (ε`)
−1−α

dε`

Change variables to u = (ε`)
−α

, and du = −α (ε`)
−α−1

dε` which also requires switching the limits of integration.
Thus

µj` = − (λ`)
α
∫ 0

∞
e
−
[∑J

k=1

[(
Ωjk
Ωj`

) 1
1−γ

λk

]α]
u

du = (λ`)
α
∫ ∞

0
e
−
[∑J

k=1

[(
Ωjk
Ωj`

) 1
1−γ

λk

]α]
u

du,

and therefore

µj` =
(λ`)

α[∑J
k=1

[(
Ωjk
Ωj`

) 1
1−γ

λk

]α] . (47)

Expression (47) applies for all 0 ≤ γ 6= 1. For γ < 1, Ωj` > 0 and can be taken out as a common factor for the
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summation in the denominator. Doing so, using Ωj` = τ
(1−γ)
j` v` and simplifying

µj` =

[
λ`τj`

(
v`
) 1

1−γ
]α

∑J
k=1

[
λkτjk (vk)

1
1−γ
]α .

as claimed in the text. For γ > 1, Ωj` < 0, then, using absolute values, we obtain

µj` =

[
λ`τj`

(
−v`

) 1
1−γ
]α

∑J
k=1

[
λkτjk (−vk)

1
1−γ
]α .,

as claimed.
Proof. Lemma 3: Conditional Expectation of Human Capital. By definition, the conditional expectation
is

E

[
ε`|Ωj`ε` = max

k

{
Ωj` (εk)

1−γ
}]

=

∫∞
0 ε`

∏
k 6=` Pr

[
εk <

(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f(ε`)dε`∫∞

0

∏
k 6=` Pr

[
εk <

(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f(ε`)dε`

=

∫∞
0 ε`

∏
k 6=` F

[(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f(ε`)dε`

µj`
,

where µj` is the mass of worker switching, which from Theorem 1, is given by µj` = (λ`)
α[∑J

k=1

[(
Ωjk
Ωj`

) 1
1−γ

λk

]α] . To

solve for the numerator,

∫ ∞
0

ε`
∏
k 6=`

Pr

[
εk <

(
Ωj`
Ωjk

) 1
1−γ

ε`

]
f(ε`)dε` =

∫ ∞
0

ε`
∏
k 6=`

e
−
[(

Ωj`
Ωjk

) 1
1−γ ε`

λk

]−α
e
−
(
ε`
λ`

)−α ( α
λ`

)(
ε`
λ`

)−1−α
dε`

=

∫ ∞
0

ε`e
−

∑J
k=1

((
Ωj`
Ωjk

) 1
1−γ 1

λk

)−α(ε`)
−α

α

λ`

(
ε`
λ`

)−1−α
dε`

=

∫ ∞
0

e
−

∑J
k=1

((
Ωj`
Ωjk

) 1
1−γ 1

λk

)−α(ε`)
−α

α (λ`)
α

(ε`)
−α

dε`.

Now, to solve the resulting integral, change variable and define

z ≡
[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

]
(ε`)
−α

.

With these substitutions, ε` = [z]
−1
α

[∑J
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α
] 1
α

and dε` = −1
α [z]

−1
α −1

[∑J
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α
] 1
α

dz.
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With these terms plugged, the expression for the numerator becomes:

∫ 0

∞
e−zα (λ`)

α

[z]
−1
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α

−α (−1

α

)
[z]
−1
α −1

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α

dz

=

∫ ∞
0

e−z (λ`)
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

]−1

[z]
−1
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α

dz

= (λ`)
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α−1 ∫ ∞

0
e−z [z]

−1
α dz

= Γ

(
1− 1

α

)
(λ`)

α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1
α−1

= Γ

(
1− 1

α

)
λ`

1

[(λ`)
α

]
1−α
α

[
J∑
k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α

] 1−α
α

= Γ

(
1− 1

α

)
λ`

 (λ`)
α∑J

k=1

(
Ωjk
Ωj`

) α
1−γ

(λk)
α


α−1
α

.

= Γ

(
1− 1

α

)
λ` [µj`]

1− 1
α .

Dividing by µj`, the result attains.

Proof. Proposition 1: Invariant Distributions for Workers and Human Capital, Exogenous Wages.
For (a), notice that since τj` > 0, then every entry of the stochastic matrix µ is positive. This implies a basic
mixing condition,i.e. that for any occupation there is a positive probability to transiting to any other, i.e. for all
j, `, µj` > 0. A standard result for Markov chains (e.g. Theorem 11.2. in Stokey et al. (1989)) it follows that there
exists a unique invariant distribution and that it is attained from any initial distribution. Similarly for (b) all the
entries of the matrix M are strictly positive; hence, from the Perron-Frobenius theorem,its largest eigenvalue has
always multiplicity equal to one (i.e., not repeated), and it is real and strictly positive. Moreover, the associated
eigenvector, the Perron root, has all its entries strictly positive and real. Since asymptotically, from any initial H0,
the dynamics of Ht = H0Mt is dominated by the Perron root, the ratios Ht(j)/Ht(j) will converge, for all j to the
ratios of the Perron eigenvector.

Proof. Proposition 1 (Cohorts): Invariant Distributions, Exogenous Wages. The law of motion for the
employment shares of workers is

θt+1 = δθ0 + θtµ (1− δ) ,

which, after some obvious iterated substitutions can be writen

θt+1 = δθ0
t∑

τ=0

[µ (1− δ)]τ .

The term
∑t
τ=0 [µ (1− δ)]τ always a converges to a finite matrix [I − µ (1− δ)]−1

since the largest eigenvalue of µ
is 1. Hence,

θ = δθ0 [I − µ (1− δ)]−1
,

would be the invariant distribution of employment of workers across occupations.
With respect to the human capital vectors, we have

Ht+1 = δH0 +HtM (1− δ) ,
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i.e.:

Ht+1 = δH0
t∑

τ=0

[M (1− δ)]τ

If GH , the Perron root of M, is less than (1− δ)−1
, then we can repeat exactly the same previous steps and the

invariant distribution would be
H = δH0 [I −M (1− δ)]−1

.

If instead GH (1− δ) ≥ 1, then Ht+1 would grow over time. If GH (1− δ) > 1, then Ht the growth is exponential.
If GH (1− δ) = 1 it would be arithmetic. In any case, define the scaled and detrended human capital as

HD
t = δH0

∑t
τ=0 [M (1− δ)]τ∑t
τ=0 [GH (1− δ)]τ

.

Then, the following limits are well defined:

lim
t→∞

HD
t = H0 ×


δ [1−GH (1− δ)] [I −M (1− δ)]−1

if GH (1− δ) < 1;

δ limt→∞

[∑t
τ=0[M(1−δ)]τ

t

]
if GH (1− δ) = 1;

δ limt→∞

[∑t
τ=0[M(1−δ)]τ

[GH (1−δ)]t−1

GH (1−δ)−1

]
if GH (1− δ) > 1.

Note that the scaling does not change neither the eigenvalues nor the normalized eigenvectors of
∑t
τ=0 [M (1− δ)]τ

for any t. In all three cases, the limit terms in the right-hand side are well defined, bounded, strictly positive and
real. Hence, in each case, the Perron root is strictly positive and non-repated. Hence, the Perron vector is also
uniquely defined, real strictly positive, and once normalized, it will uniquely pin-down the asymptotic cross-section
distribution of workers.

Proof. Proposition 2: Firm Optimization. The probability that labor is used to complete task x in occupation
j at time t is,

πH,jt = Pr

(
wjt

zH,jt (x)
<

rMt

zM,j
t (x)

)

=

∫ ∞
0

Pr

(
zM,j <

rMt

wjt
zH,j

)
fj(z

H,j)dzH,j

=

∫ ∞
0

e
−
(
rMt

w
j
t

zH,j

A
M,j
t

)−νj
e
−
(
zH,j

A
H,j
t

)−νj (
νj

AH,jt

) (
zH,j

AH,jt

)−1−νj

dzH,j

=

∫ ∞
0

e
−
(
rMt

w
j
t

zH,j

A
M,j
t

)−νj
−
(
zH,j

A
H,j
t

)−νj (
νj

AH,jt

) (
zH,j

AH,jt

)−1−νj

dzH,j

= νj (AH,jt )νj
∫ ∞

0
e
−
[(

rMt

w
j
t

1

A
M,j
t

)−νj
+

(
1

A
H,j
t

)−νj ]
(zH,j)−νj (

zH,j
)−1−νj

dzH,j .
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Let u =
(
zH,j

)−νj . Then du = −νj
(
zH,j

)−1−νj . With these:

πH,jt = −(AH,jt )νj
∫ 0

∞
e
−
[(

rMt

w
j
t

1

A
M,j
t

)−νj
+

(
1

A
H,j
t

)−νj ]
u
du

= (AH,jt )νj
∫ ∞

0
e
−
[(

rMt

w
j
t

1

A
M,j
t

)−νj
+

(
1

A
H,j
t

)−νj ]
u
du

= (AH,jt )νj
1(

rMt
wjt

1

AM,jt

)−νj
+
(

1

AH,jt

)−νj
=

(wjt )
−νj (AH,jt )νj

(rMt )−νj (AM,j
t )νj + (wjt )

−νj (AH,jt )νj
,

as claimed in the text. Similarly, for machines, simply use the previous expression, πM,j
t = 1− πH,jt and hence

πM,j
t =

(rMt )−νj (AM,j
t )νj

(rMt )−νj (AM,j
t )νj + (wjt )

−νj (AH,jt )νj
.

Now for the unitary cost of the aggregate bundle of tasks, Cjt , note that we can write the expression as,

(
Cjt

)(1−η)
=

∫ ∞
0

(
wjt

zH,jt

)(1−η)

Pr

(
zM,j <

rMt

wjt
zH,j

)
fj(z

H,j)dzH,j +

∫ ∞
0

(
rMt

zM,j
t

)(1−η)

Pr

(
zH,j <

wjt
rMt

zM,j

)
fj(z

M,j)dzM,j

=

∫ ∞
0

(
wjt

zH,jt

)(1−η)

e
−
(
rMt

w
j
t

zH,j

A
M,j
t

)−νj
e
−
(
zH,j

A
H,j
t

)−νj (
νj

AjH,t

) (
zH,j

AH,jt

)−1−νj

dzH,j +

∫ ∞
0

(
rMt

zM,j
t

)(1−η)

e
−
(
w
j
t

rMt

zM,j

A
M,j
t

)−νj
e
−
(
zM,j

A
M,j
t

)−νj (
νj

AM,j
t

) (
zM,j

AM,j
t

)−1−νj

dzM,j

= (wjt )
(1−η) νj (AH,jt )νj

∫ ∞
0

e
−
[(

rMt

w
j
t

1

A
M,j
t

)−νj
+

(
1

A
H,j
t

)−νj ]
(zH,j)−νj (

zH,j
)−2−νj+η

dzH,j +

(rMt )(1−η) νj (AM,j
t )νj

∫ ∞
0

e
−
[(

w
j
t

rMt

1

A
H,j
t

)−νj
+

(
1

A
M,j
t

)−νj]
(zM,j)−νj (

zM,j
)−2−νj+η

dzM,j

Let u1 =

[(
rMt
wjt

1

AM,jt

)−νj
+
(

1

AH,jt

)−νj]
(zH,j)−ν , which implies that zH,j =

[(
rMt
wjt

1

AM,jt

)−νj
+
(

1

AH,jt

)−νj]1/ν

(u1)−1/ν .

Similarly, let u2 =

[(
wjt
rMt

1

AH,jt

)−νj
+
(

1

AM,jt

)−νj]
(zM,j)−ν , which implies that

zM,j =

[(
wjt
rMt

1

AH,jt

)−νj
+
(

1

AM,jt

)−νj]1/ν

(u2)−1/ν . Then,
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(
Cjt

)(1−η)
= (wjt )

(1−η) νj (AH,jt )νj
∫ 0

∞
e−u1


(rMt

wjt

1

AM,j
t

)−νj
+

(
1

AH,jt

)−νj1/νj

(u1)−1/νj


−2−νj+η

×

(rMt
wjt

1

AM,j
t

)−νj
+

(
1

AH,jt

)−νj1/νj (
−1

νj

)
u
−1−1/νj
1 du1 +

(rMt )(1−η) νj (AM,j
t )νj

∫ 0

∞
e−u2


( wjt

rMt

1

AH,jt

)−νj
+

(
1

AM,j
t

)−νj1/νj

−2−νj+η

×

( wjt
rMt

1

AH,jt

)−νj
+

(
1

AM,j
t

)−νj1/νj (
−1

νj

)
u
−1−1/νj
2 du2

= (wjt )
(1−η) (AH,jt )νj

(rMt
wjt

1

AM,j
t

)−νj
+

(
1

AH,jt

)−νj
−1−νj+η

νj ∫ ∞
0

e−u1u
1−η
νj

1 du1 +

(rMt )(1−η) (AM,j
t )νj

( wjt
rMt

1

AH,jt

)−νj
+

(
1

AM,j
t

)−νj
−1−νj+η

νj ∫ ∞
0

e−u2u
1−η
νj

2 du2

= (wjt )
(1−η) (AH,jt )νj

(rMt
wjt

1

AM,j
t

)−νj
+

(
1

AH,jt

)−νj−1− 1−η
νj

Γ

(
1 +

1− η
νj

)
+

(rMt )(1−η) (AM,j
t )νj

( wjt
rMt

1

AH,jt

)−νj
+

(
1

AM,j
t

)−νj−1− 1−η
νj

Γ

(
1 +

1− η
νj

)

= (wjt )
(1−η)(wjt )

−νj−(1−η) (AH,jt )νj

( rMt

AM,j
t

)−νj
+

(
wjt

AH,jt

)−νj−1− 1−η
νj

Γ

(
1 +

1− η
νj

)
+

(rMt )(1−η)(rMt )−νj−(1−η) (AM,j
t )νj

( rMt

AM,j
t

)−νj
+

(
wjt

AH,jt

)−νj−1− 1−η
νj

Γ

(
1 +

1− η
νj

)

= (wjt )
−νj (AH,jt )νj

( rMt

AM,j
t

)−νj
+

(
wjt

AH,jt

)−νj−1− 1−η
νj

Γ

(
1 +

1− η
νj

)
+

(rMt )−νj (AM,j
t )νj

( rMt

AM,j
t

)−νj
+

(
wjt

AH,jt

)−νj−1− 1−η
νj

Γ

(
1 +

1− η
νj

)

=

( rMt

AM,j
t

)−νj
+

(
wjt

AH,jt

)−νj( rMt

AM,j
t

)−νj
+

(
wjt

AH,jt

)−νj−1− 1−η
νj

Γ

(
1 +

1− η
νj

)

Therefore,

Cjt = Γ

(
1 +

1− η
νj

)1/(1−η) [
(rMt )−νj (AMt )νj + (wjt )

−νj (AH,jt )νj
]− 1

νj .

Finally, the formula for the unit cost of the occupation bunddle, CQt , and the final good prices, Pt, follows from the
well-known formulas for the unitary cost implied by a CES production and a Cobb-Douglas production functions,
respectively.

Euler Equations of Capital Owners.
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Capital owners take as given the real rental rates of structures and machines. In units of, these rental rates are
denoted

ρKt ≡
rKt
Pt

and ρM,j
t ≡ rM,j

t

Pt
.

Then, the Bellman Equation for capital owners is defined as:

V Kt (Kt,Mt, Bt) = max
Bt+1,Kt+1,Mt+1

{
u
(
cKt

)
+ βV Kt+1 (Kt+1,Mt+1, Bt+1)

}
.

subject to

cKt = ρKt Kt + ρMt Mt +RtBt −Bt+1 − IKt −
J∑
j=1

IM,j
t

Kt+1 =
(

1− δK
)
Kt + ξKt I

K
t ,

M j
t+1 =

(
1− δM

)
M j
t + ξMt I

M,j
t , ∀j = 1, 2, . . . J.

where rt = Rt/Pt is the gross, real interest rate and Bt is the net financial position (bonds) of the capital
owner household. We consider (a) a small open economy where the rate Rt is exogenously given in world financial
markets, and (b) a closed economy where Bt = Bt+1 = 0 and the interest rate is determined by

{
cKt
}

. In either

case, capital owners take as given
{
rt, ρ

K
t , ρ

M,j
t

}
. The first order conditions and the envelop conditions for this

problem are standard. After simplification, they lead to

Rt+1

Pt+1
= β−1

(
cKt+1

cKt

)γ
,
rKt+1

Pt+1
=

Rt+1

Pt+1
−
(
1− δK

)
ξKt

, and
rMt+1

Pt+1
=

Rt+1

Pt+1
−
(
1− δM

)
ξMt

,

which are the same expressions as in the text.
Proof. Proposition 3: Aggregation, Intertemporal Equilibrium. Using the equilibrium determination
conditions (24) for any j and `: Using the equilibrium determination conditions (24) (25) for any occupation j:

πH,jt

πM,j
t

=

(
ωjt

)−νj (
AH,jt

)νj
(
ρjt

)−νj (
AM,j
t

)νj .

Moreover, by definition of factor shares: in each of the occupations

πH,jt =
ωjtH

j
t

ωjtH
j
t + ρjtM

j
t

and πM,j
t =

ρjtM
j
t

ωjtH
j
t + ρjtM

j
t

.

Then:

πH,jt

πM,j
t

=

(
ωjt

)−νj (
AH,jt

)νj
(
ρjt

)−νj (
AM,j
t

)νj =
ωjtH

j
t

ρjtM
j
t

.

Using the latter equality to solve for ωjt /ρ
j
t

ωjt

ρjt
=

(
M j
t

Hj
t

) 1
1+νj

(
AH,jt

AM,j
t

) νj
1+νj

. (48)
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By definition, CjtQ
j
t = ωjtH

j
t + ρjtM

j
t . Hence, CjtQ

j
t = ρjt

[
ωjt
ρjt
Hj
t +M j

t

]
, and therefore:

Qjt =

[
ωjt
ρjt
Hj
t +M j

t

]
Cjt /ρ

j
t

.

Next notice that using the formula for the minimized cost Cjt in Proposition 2, we obtain:

Cjt

ρjt
= Γ

(
1 +

1− η
νj

) 1
1−η

[((
AM,j
t

)νj
+

(
AH,jt

ρjt

ωjt

)νj)]−1
νj

.

Using the last equation into the last formula for Qjt

Qjt =

[
ωjt
ρjt
Hj
t +M j

t

]
Γ
(

1 + 1−η
νj

) 1
1−η

[((
AM,j
t

)νj
+
(
AH,jt

ρjt
ωjt

)νj)]−1
νj

.

With this, we can rearrange and then substitute the formula (48) for ωjt /ρ
j
t

Qjt = Γ

(
1 +

1− η
νj

) 1
η−1

[(
Mj
t

Hjt

) 1
1+νj

(
AH,jt

AM,jt

) νj
1+νj

Hj
t +M j

t

]
(AM,j

t

)νj
+

 AH,jt(
M
j
t

H
j
t

) 1
1+νj

(
A
H,j
t

A
M,j
t

) νj
1+νj


νj

−1
νj

,

= Γ

(
1 +

1− η
νj

) 1
η−1

[(
AM,j
t M j

t

) νj

1+ν
j
t +

(
AH,jt Hj

t

) νj

1+ν
j
t

] 1+νj

ν
j
t

.

The last formula obtains after regrouping and simplifying the previous equation, and coincides with the one in
the text. The formulae for Qt and for Yt result from simply using the CES and the Cobb-Douglass aggregators,
respectively.

For part (b), the formulae for the rental rates and unitary wages, obtain from direct derivation of Yt with
respect to the respective factor of production and then simplifying.
Proof. Theorem 2: Existence of an equilibrium BGP.

To establish existence, we use the equilibrium conditions of the model to construct a continuous mapping f

from a closed set to itself. We will work with a closed set of machine-to-worker ratios, xj ≡ Mj

Hj for j = 1, . . . J . We
explain why a fixed point of such a mapping induces a solution for all the other relevant variables for an equilibrium
BGP.

Recall that total output is given by

Yt = (Kt)
ϕ

 J∑
j=1

Γj

[(
AM,j
t M j

t

) νj
1+νj +

(
AH,jt Hj

t

) νj
1+νj

] (1+νj)(ρ−1)

νj ρ


(1−ϕ)ρ
ρ−1

, (49)

where we have kept the notation Γj ≡ Γ
(

1 + 1−η
νj

) ρ−1
ρ(η−1)

to shorten the expressions.

We consider a BGP in which
AH,jt = aH,j (GA)

t
, and AM,j

t = aM,j ,

where aH,j > 0, aM,j > 0, and GA ≥ 1. If GH < (1− δ)−1
, the economy settles in a steady state vector of
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human capitals Hj , total output will grow over time at the rate GY = GA. If instead GH > (1− δ)−1
, then

there would be sustained growth in the vector of aggregate human capital, which, in a BGP would be given by
Hj
t = Hj [GH (1− δ)]t. In this case, aggregate ouput Yt and aggregate structures and machines Kt,M

j
t would all

grow at the rate and grow at the rate GY ≡ GH (1− δ)GA. With this definition of GY , total output would follow:

Yt = [Kt]
ϕ

 J∑
j=1

Γj

{ [
M j
t · aM,j

] νj
1+νj +

[
Hj · aH,j [GY ]

t
] νj

1+νj

} (1+νj)(ρ−1)

νj ρ


(1−ϕ)ρ
ρ−1

. (50)

Then, in either form of BGP, the rental rates of structures, ρK , machines, ρM,j , and of unitary skills prices wjt , will
be given by

ρK = ϕ
Yt
Kt

,

ρM,j = (1− ϕ) [Kt]
ϕ

ΘtΓj


[
M j
t a

M,j

(GY )
t

] νj
1+νj

+
[
HjaH,j

] νj
1+νj


(1+νj)(ρ−1)

νj ρ
−1 [

aM,j
] νj

1+νj
[
(GY )

t
]1−ϕ− νj

1+νj
[
M j
t

] νj
1+νj

−1
,

wjt = (1− ϕ) [Kt]
ϕ

ΘtΓj


[
M j
t a

M,j

(GY )
t

] νj
1+νj

+
[
HjaH,j

] νj
1+νj


(1+νj)(ρ−1)

νj ρ
−1 [

aH,j
] νj

1+νj
[
(GA)

t
]1−ϕ [

Hj
] νj

1+νj
−1

,

where Θt =

∑J
k=1 Γk

([
Mk
t a

M,k
(

1
GY

)t] νk
1+νk

+
[
HkaH,k

] νk
1+νk

) (1+νk)(ρ−1)

νk ρ


(1−ϕ)ρ
ρ−1 −1

.

The first equation indicates that the output-to-structures ratio must be constant along the BGP. Hence, Kt

must grow at the rate of growth of Yt. The second equation indicates that for constant rental rates for machines,
then, the stock of machines M j

t must grow at the rate GY . In this way, the term M j
t · aM,j (GY )

−t
is constant over

time. Let M j
t = mj (GY )

t
and Kt = k (GY )

t
, then, after simplifying:

ρM,j = (1− ϕ) [k]
ϕ

ΦtΓj

{[
mjaM,j

] νj
1+νj +

[
HjaH,j

] νj
1+νj

} (1+νj)(ρ−1)

νj ρ
−1 [

aM,j
] νj

1+νj
[
mj
] νj

1+νj
−1

, and (51)

wjt = (1− ϕ) [k]
ϕ

ΦtΓj

{[
mjaM,j

] νj
1+νj +

[
HjaH,j

] νj
1+νj

} (1+νj)(ρ−1)

νj ρ
−1 [

aH,j
] νj

1+νj
[
Hj
] νj

1+νj
−1

(GA)
t
. (52)

With exogenously given time invariant and strictly positive productivities
{
aM , j , aH, ,j

}J
j=1

, we now use

equations (51) and (52) to define the continuous mapping f from a closed set of machine-to-worker ratios, xj =

mj/Hj , j = 1, ...J , to itself, i.e.: f : ∆J → ∆J , where ∆J ≡
{
x ∈ RJ+ :

∑J
j=1 xj = 1

}
is the J-dimensional simplex.

To start, fix any x ∈ ∆J such that xj > 0 for all j = 1, 2, ...J , and re-write (52) by (51), in terms of x:

ρM,j = (1− ϕ) [k]
ϕ

ΦtΓj
[
aM,j

] νj
1+νj

[
Hj
]− 1

ρ

{([
xja

M,j
] νj

1+νj +
[
aH,j

] νj
1+νj

)} (1+νj)(ρ−1)

νj ρ
−1

[xj ]
νj

1+νj
−1

, (53)

wjt = (1− ϕ) [k]
ϕ

ΦtΓj
[
aH,j

] νj
1+νj

[
Hj
]−1
ρ

{([
xja

M,j
] νj

1+νj +
[
aH,j

] νj
1+νj

)} (1+νj)(ρ−1)

νj ρ
−1

(GA)
t
. (54)

75



For any j, divide (54) by (53) and obtain:

wjt = ρM,j

(
aH,j

aM,j

) νj
1+νj

(xj)
1

1+νj (GA)
t
.

That is, unitary wages in occupation j depend on the rental rate of machines ρM,j , the relative productivities of
those two factors, and the machine-to-workers ratio xj specific to that occupation and a common growth term.
But since the rental rates of machines across all occupations are equal, for any k 6= j, then

ωj

ωk
(x) ≡ wjt

wkt
=

(
aH,j

aM,j

) νj
1+νj (xj)

1
1+νj(

aH,k

aM,k

) νk
1+νk (xk)

1
1+νk

,

which is positive and well defined since xj > 0 and xk > 0. Then, ωj

ωk
(x), the relative wage of occupation j

relative to occupation k is constant over time, and a continuous function of x. Recall that, the relative wages
wj/wk uniquely determine the value of the relative supply Hj/Hk because of the homogeneity of the dynamic
programming problem of workers. Specifically, following Proposition 2, let H0 (ω) denote the vector of human
capitals from new workers, implied by their initial occupation choices, given ω (x). Then, define:

HP (x) ≡ H0 [ω (x)]×



[1−GH [ω (x)] (1− δ)] [I −M [ω (x)] (1− δ)]−1
if GH [ω (x)] (1− δ) < 1,

limt→∞

[∑t
τ=0[M[ω(x)](1−δ)]τ

t

]
if GH [ω (x)] (1− δ) = 1,

limt→∞

[∑t
τ=0[M[ω(x)](1−δ)]τ

[GH [ω(x)](1−δ)]t−1

GH [ω(x)](1−δ)−1

]
if GH [ω (x)] (1− δ) > 1,

where GH (ω(x)) is the Perron root of M (ω(x)). For each j, define the function HP
j (x) as the j − th coordinate

of HP (x), which, up to a scale, defines the human capital in occupation j as a continuous function of x. In sum,
with the equilibrium x we can solve for the aggregate supply, using the equilibrium occupation choices and human
capital accumulation of workers along a BGP.

Similarly, given x, we now show how the equalization in the rental rates of machines define a continuous
mapping for the relative investment in machines across occupations. For any two j 6= k, equate their rental rate of
machines (53), after cancelling common terms and rearranging and obtain:

xj
xk

=

Γj
[
aM,j

] νj
1+νj

[
Hj
]− 1

ρ

{([
xja

M,j
] νj

1+νj +
[
aH,j

] νj
1+νj

)} (1+νj)(ρ−1)

νj ρ
−1

[xj ]
νj

1+νj

Γk [aM,k]
νk

1+νk [Hk]
− 1
ρ

{(
[xkaM,k]

νk
1+νk + [aH,k]

νk
1+νk

)} (1+νk)(ρ−1)

νk ρ
−1

[xk]
νk

1+νk

.

We use this condition to define the function of relative investments in machines for occupations j relative to
machines in occupation k that would equate their rental rates in a BGP:

Mj,k (x) ≡ Γj
Γk

[
HP
j (x)

HP
k (x)

]− 1
ρ

([
xja

M,j
] νj

1+νj +
[
aH,j

] νj
1+νj

) (1+νj)(ρ−1)

νj ρ
−1 [

aM,jxj
] νj

1+νj

(
[xkaM,k]

νk
1+νk + [aH,k]

νk
1+νk

) (1+νk)(ρ−1)

νk ρ
−1

[aM,kxk]
νk

1+νk

.

For any fixed k ∈ {1, ...J}, define Fj,k (x) ≡ Mj,k(x)

HPj (x)
for all j. Fj,k (x) is positive for all j and continuous on x.
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Scaling it as

f (x) ≡ Fj,k (x)∑J
`=1 F`,k (x)

,

implies f(x) ∈ ∆J . It also makes the function independent of the chosen denominator k and thus defines a
continuous mapping f : ∆J → ∆J . From Brower’s fixed point theorem (e.g. Mascolell et al. (1995), page 962)
there exists at least one fixed point x ∈ ∆J , i.e. x = f (x).

Having determined a fixed point x, then the level of the productivities
{
aM,j , aH,j

}J
j=1

determines the rel-

ative level of Q/K, and given ρk, the determination of the value of the constant k = Kt/Yt is standard and
straightforward.
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B Dynamic Hat Algebra

The following equations describe the set of equilibrium conditions of the model. For simplicity we take the case of
γ > 1 and a small open economy with cohorts (stochastic lifetimes), which we use in our quantitative application.

vjt =
(wjt/Pt)

1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(−v`t+1)
α

1−γ (τj`λ`)
α

] 1−γ
α

(55)

µj`t =

[
λ`τj`

(
−v`t+1

) 1
1−γ
]α

∑J
k=1

[
λkτjk

(
−vkt+1

) 1
1−γ
]α (56)

H`
t+1 = (1− δ)

J∑
j=1

Γ

(
1− 1

α

)
τj` λ`

(
µj`t

)1− 1
α

Hj
t + δH0,`

t+1 (57)

θ`t+1 = (1− δ)
J∑
j=1

µj`t θ
j
t + δθ0,`

t+1 (58)

θ0,j
t+1 =

[
λjτ

0,j
(
−vjt+1

) 1
1−γ
]α

J∑
k=1

[
λkτ0,k

(
−vkt+1

) 1
1−γ
]α , (59)

H0,j
t+1 = Γ

(
1− 1

α

)
τ0,j λj

[
θ0,j
t+1

]1− 1
α

(60)

wjt
Pt

= Γ

(
1 +

1− η
νj

) −νj
(1+νj)(1−η)

(1− ϕ)
ρ

1+νj

(
AjHt

) νj
(1+νj)

(
Hj
t

)− 1
(1+νj)

K
ϕ(ρ−1)

(1−ϕ)(1+νj)

t

(
Cjt
Pt

) 1+νj−ρ
1+νj

(Yt)
1−ρϕ

(1+νj)(1−ϕ)(61)

rMt
Pt

= Γ

(
1 +

1− η
νj

) −νj
(1+νj)(1−η) (

AjMt

) νj
(1+νj)

(
M j
t

)− 1
(1+νj)

(
Cjt
Pt

)1− ρ
1+νj

((1− ϕ)Yt)
ρ

1+νj

(
Y

1/(1−ϕ)
t

K
ϕ/(1−ϕ)
t

) 1−ρ
1+νj

(62)

rKt
Pt

= ϕ
Yt
Kt

(63)

Cjt
Pt

= Γ

(
1 +

1− η
νj

) 1
1−η

[(
AM,j
t

rMt /Pt

)νj
+

(
AH,jt

wjt/Pt

)νj]−1
νj

(64)

Yt = (Kt)
ϕ

 J∑
j=1

Γ

(
1 +

1− η
νj

) ρ−1
ρ(η−1)

[(
AjMt M j

t

) νj
1+νj +

(
AjHt Hj

t

) νj
1+νj

] (1+νj)(ρ−1)

νj ρ


(1−ϕ)ρ
ρ−1

(65)

Rt+1

Pt+1
= β−1

(
cKt+1

cKt

)γ
(66)

rKt+1

Pt+1
=

Rt+1

Pt+1
− (1− δK) (67)

rMt+1

Pt+1
=

(
ξMt+1

)−1
[
Rt+1

Pt
− (1− δM )

]
(68)

(69)

We now operate over these equations to achieve a more tractable set of equilibrium conditions. Take the ratio
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of vjt+1 and vjt using (55).

vjt+1

vjt
=

(
wjt+1/Pt+1

wjt/Pt

)1−γ
(wjt/Pt)

1−γ

(1− γ)vjt
−
β Γ
(
1− 1−γ

α

)
vjt

[
J∑
`=1

(−v`t+1)
α

1−γ (τj`λ`)
α

] 1−γ
α

[∑J
`=1(−v`t+2)

α
1−γ (τj`λ`)

α
] 1−γ

α

[∑J
`=1(−v`t+1)

α
1−γ (τj`λ`)

α
] 1−γ

α

=

(
wjt+1/Pt+1

wjt/Pt

)1−γ

Φjt +
(

1− Φjt

) J∑
`=1

(−v`t+1)
α

1−γ (τj`λ`)
α[∑J

k=1(−vkt+1)
α

1−γ (τjkλk)
α
] (−v`t+2)

α
1−γ

(−vkt+1)
α

1−γ


1−γ
α

=

(
wjt+1/Pt+1

wjt/Pt

)1−γ

Φjt +
(

1− Φjt

)[ J∑
`=1

µj`t

(
v`t+2

v`t+1

) α
1−γ
] 1−γ

α

v̂jt+1 = Φjt

(
ŵjt+1/P̂t+1

)1−γ
+
(

1− Φjt

)[ J∑
`=1

µj`t
(
v̂`t+2

) α
1−γ

] 1−γ
α

,

where, Φjt =
(wjt/Pt)

1−γ

(1−γ)vjt
.

Similarly, take the ratio between µj`t and µj`t−1 using (56),

µj`t

µj`t−1

=

(
v`t+1

v`t

) α
1−γ

∑J
k=1

λαk τ
α
jk(−vkt+1)

α
1−γ∑J

m=1 λ
α
mτ

α
jm(−vmt )

α
1−γ

=

(
v`t+1

v`t

) α
1−γ

∑J
k=1 µ

j`
t

(
v`t+1

v`t

) α
1−γ

=

(
v̂`t+1

) α
1−γ∑J

k=1 µ
j`
t−1

(
v̂`t+1

) α
1−γ

.

Call Mj`
t = Γ

(
1− 1

α

)
λ` τ j`(µj`t )1− 1

α , then we can write equation (57),

H`
t+1 = (1− δ)

J∑
j=1

(
µj`t

µj`t−1

)1− 1
α

Mj`
t−1 H

j
t + δH0,`

t+1.

And for the entering cohort, take the ratio of θ0,j
t+1 and θ0,j

t ,

θ0,j
t+1

θ0,j
t

=

(
vjt+1

vjt

) α
1−γ

∑J
k=1 θ

0,k
t

(
vkt+1

vkt

) α
1−γ

(70)

=

(
v̂jt+1

) α
1−γ

∑J
k=1 θ

0,k
t

(
v̂kt+1

) α
1−γ

(71)

For output, we start with the expression (65).

Yt = (Kt)
ϕ
(
Q1−ϕ
t

)
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where

Qt =

 J∑
j=1

Γ

(
1 +

1− η
νj

) ρ−1
ρ(η−1)

[(
AjMt M j

t

) νj
1+νj +

(
AjHt Hj

t

) νj
1+νj

] (1+νj)(ρ−1)

νj ρ


ρ
ρ−1

and the hat algebra is

Ŷt+1 =
(
K̂t+1

)ϕ (
Q̂1−ϕ
t+1

)
.

Define Qjt as,

Qjt = Γ

(
1 +

1− η
νj

) 1
η−1

[(
AjMt M j

t

) νj
1+νj +

(
AjHt Hj

t

) νj
1+νj

] 1+νj
νj

and note that, by definition of the CES aggregator,

Qt =

 J∑
j=1

(
Qjt

) ρ−1
ρ


ρ
ρ−1

(72)

then, the hat algebra is

Q̂t+1 =

 J∑
j=1

(
Q̂jt+1

) ρ−1
ρ

(
Qjt
Qt

) ρ−1
ρ


ρ
ρ−1

note that by (72),

[∑J
j=1

(
Qjt
Qt

) ρ−1
ρ

]
= 1 and each of these terms in the sum is a share of the total (by properties

of the CES function, is the share of total expenditures in Qj , i.e. Cjt Q
j
t , out of the total value of Qt, i.e. CQt Qt.

For now, define

%jt =

(
Qjt
Qt

) ρ−1
ρ

.

The hat algebra for Qjt is,

Q̂jt+1 = Γ

(
1 +

1− η
νj

) 1
η−1

(ÂjMt+1M̂
j
t+1

) νj
1+νj

(
AjMt M j

t

Qjt

) νj
1+νj

+
(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj

(
AjHt Hj

t

Qjt

) νj
1+νj


1+νj
νj

.

Using the following identity, which can be easily derived using the definition of π and the equilibrium shares,

πjMt =

Γ
(

1 + 1−η
νj

) 1
η−1

AjMt M j
t

Qjt


νj

1+νj

(73)

and similarly for πjHt , we can rewrite the previous equation as,

Q̂jt+1 =

[(
ÂjMt+1M̂

j
t+1

) νj
1+νj πjMt +

(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj πjHt

] 1+νj
νj

Combining all the previous results we have,
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Ŷt+1 =
(
K̂t+1

)ϕ  J∑
j=1

%jt

[(
ÂjMt+1M̂

j
t+1

) νj
1+νj πjMt +

(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj πjHt

] (1+νj)(ρ−1)

νj ρ


(1−ϕ)ρ
ρ−1

.

And the law of motion for %jt is,

%jt+1 =

%jt

[(
ÂjMt+1M̂

j
t+1

) νj
1+νj πjMt +

(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj πjHt

] (1+νj)(ρ−1)

νj ρ

∑J
j=1 %

j
t

[(
ÂjMt+1M̂

j
t+1

) νj
1+νj πjMt +

(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj πjHt

] (1+νj)(ρ−1)

νj ρ

.

We now derive the hat algebra for wages, rental rates and unit costs. The expressions for real wages and rental
rates use (73) and

rMt
Pt
M j
t = πjMt

Cjt
Pt
Qjt ;

wjt
Pt
Hj
t = πjHt

Cjt
Pt
Qjt .

After some algebra, it follows that

rMt
Pt

= Γ

(
1 +

1− η
νj

) −νj
(1+νj)(1−η) (

AjMt

) νj
(1+νj)

(
M j
t

)− 1
(1+νj) C

j
t

Pt

(
Qjt

) 1
1+νj

using the optimal CES demand, Qjt =
(
Cjt /Pt

CQt /Pt

)−ρ
Qt, we have

rMt
Pt

= Γ

(
1 +

1− η
νj

) −νj
(1+νj)(1−η) (

AjMt

) νj
(1+νj)

(
M j
t

)− 1
(1+νj)

(
Cjt
Pt

)1− ρ
1+νj

(
CQt
Pt

Qt

) ρ
1+νj

(Qt)
1−ρ
1+νj ,

using the condition
CQt
Pt

Qt = (1− ϕ)Yt, and the aggregate production function,

rMt
Pt

= Γ

(
1 +

1− η
νj

) −νj
(1+νj)(1−η) (

AjMt

) νj
(1+νj)

(
M j
t

)− 1
(1+νj)

(
Cjt
Pt

)1− ρ
1+νj

((1− ϕ)Yt)
ρ

1+νj

(
Y

1/(1−ϕ)
t

K
ϕ/(1−ϕ)
t

) 1−ρ
1+νj

rMt
Pt

= Γ

(
1 +

1− η
νj

) −νj
(1+νj)(1−η)

(1− ϕ)
ρ

1+νj

(
AjMt

) νj
(1+νj)

(
M j
t

)− 1
(1+νj)

K
ϕ(ρ−1)

(1−ϕ)(1+νj)

t

(
Cjt
Pt

) 1+νj−ρ
1+νj

(Yt)
1−ρϕ

(1+νj)(1−ϕ) ,

and similarly for wages,

wjt
Pt

= Γ

(
1 +

1− η
νj

) −νj
(1+νj)(1−η)

(1− ϕ)
ρ

1+νj

(
AjHt

) νj
(1+νj)

(
Hj
t

)− 1
(1+νj)

K
ϕ(ρ−1)

(1−ϕ)(1+νj)

t

(
Cjt
Pt

) 1+νj−ρ
1+νj

(Yt)
1−ρϕ

(1+νj)(1−ϕ) .

The hat algebra for these expressions is straightforward,

r̂mt+1

P̂t+1

=
(
ÂjMt+1

) νj
(1+νj)

(
M̂ j
t+1

)− 1
(1+νj)

K
ϕ(ρ−1)

(1−ϕ)(1+νj)

t+1

(
Ĉjt+1

P̂t+1

) 1+νj−ρ
1+νj (

Ŷt+1

) 1−ρϕ
(1+νj)(1−ϕ)

81



ŵjt+1

P̂t+1

=
(
ÂjHt+1

) νj
(1+νj)

(
Ĥj
t+1

)− 1
(1+νj)

K
ϕ(ρ−1)

(1−ϕ)(1+νj)

t+1

(
Ĉjt+1

P̂t+1

) 1+νj−ρ
1+νj (

Ŷt+1

) 1−ρϕ
(1+νj)(1−ϕ)

.

We have the unit costs inside these expressions, which itself depends on rental rates and wages. The hat algebra
for unit costs is,

Ĉjt+1

P̂t+1

=

(rMt+1/Pt+1)−νj (AjMt+1)νjΓ

(
1 +

1− η
νj

) νj
η−1

(
Cjt
Pt

)νj
+ (wjt/Pt+1)−νj (AjHt )νjΓ

(
1 +

1− η
νj

) νj
η−1

(
Cjt
Pt

)νj−1/νj

.

and using (73),

Ĉjt+1

P̂t+1

=

( r̂Mt+1

P̂t+1

)−νj
(ÂjMt+1)νj πjMt +

(
ŵjt+1

P̂t+1

)−νj
(ÂjHt+1)νj πjHt

−1/νj

We can manipulate the Euler equations to get,

r̂Kt+1

P̂t+1

=

Rt+1

Pt+1
−
(
1− δK

)
Rt
Pt
− (1− δK)

r̂Mt+1

P̂t+1

=

(
1

ξ̂Mt+1

) Rt+1

Pt+1
−
(
1− δM

)
1

ξ̂Mt+2

Rt
Pt
− (1− δM ) 1

ξ̂Mt+1
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Then, we can express the set of equilibrium conditions under perfect foresight as,

v̂jt+1 = Φjt

(
ŵjt+1

P̂t+1

)1−γ

+
(

1− Φjt

)[ J∑
`=1

µj`t
(
v̂`t+2

) α
1−γ

] 1−γ
α

(74)

Φjt+1 = Φjt

[
(ŵjt+1

]1−γ
v̂jt+1

(75)

µj`t =
µj`t−1

(
v̂`t+1

) α
1−γ∑J

k=1 µ
j`
t−1 (v̂t+1)

α
1−γ

(76)

H`
t+1 = (1− δ)

J∑
j=1

Mj`
t Hj

t + δH0,`
t+1 (77)

Mj`
t =

(
µj`t

µj`t−1

)1− 1
α

Mj`
t−1 (78)

θ`t+1 = (1− δ)
J∑
j=1

µj`t θ
j
t + δθ0,`

t+1 (79)

θ0,`
t+1 =

θ0,`
t

(
v̂`t+1

) α
1−γ∑J

k=1 θ
0,k
t

(
v̂kt+1

) α
1−γ

(80)

H0,`
t+1 = H0,`

t

(
θ0,`
t+1

θ0,`
t

)1− 1
α

(81)

ŵjt+1

P̂t+1

=
(
ÂjHt+1

) νj
(1+νj)

(
Ĥj
t+1

)− 1
(1+νj)

K̂
ϕ(ρ−1)

(1−ϕ)(1+νj)

t+1

(
Ĉjt+1

P̂t+1

) 1+νj−ρ
1+νj (

Ŷt+1

) 1−ρϕ
(1+νj)(1−ϕ)

(82)

r̂mt+1

P̂t+1

=
(
ÂjMt+1

) νj
(1+νj)

(
M̂ j
t+1

)− 1
(1+νj)

K̂
ϕ(ρ−1)

(1−ϕ)(1+νj)

t+1

(
Ĉjt+1

P̂t+1

) 1+νj−ρ
1+νj (

Ŷt+1

) 1−ρϕ
(1+νj)(1−ϕ)

(83)

r̂Kt+1

P̂t+1

=
Ŷt+1

K̂t+1

(84)

Ŷt+1 =
(
K̂t+1

)ϕ  J∑
j=1

%jt

[(
ÂjMt+1M̂

j
t+1

) νj
1+νj

πjMt +
(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj

πjHt

] (1+νj)(ρ−1)

νj ρ


(1−ϕ)ρ
ρ−1

(85)

%jt+1 =

%jt

[(
ÂjMt+1M̂

j
t+1

) νj
1+νj

πjMt +
(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj

πjHt

] (1+νj)(ρ−1)

νj ρ

∑J
j=1 %

j
t

[(
ÂjMt+1M̂

j
t+1

) νj
1+νj

πjMt +
(
ÂjHt+1Ĥ

j
t+1

) νj
1+νj

πjHt

] (1+νj)(ρ−1)

νj ρ

(86)

Ĉjt+1

P̂t+1

=

( r̂Mt+1

P̂t+1

)−νj
(ÂjMt+1)νj πjMt +

(
ŵjt+1

P̂t+1

)−νj
(ÂjHt+1)νj πjHt

−1/νj

(87)

πjHt+1 =
πjHt (ŵjt+1/P̂t+1)−νj (ÂjHt+1)νj

πjHt (ŵjt+1/P̂t+1)−νj (Âjt+1)νj + πmt (r̂mt+1/P̂t+1)−νj (ÂMt+1)νj
(88)

πjMt+1 =
πjMt (r̂mt+1/P̂t+1)−νj (ÂjMt+1)νj

πjHt (ŵjt+1/P̂t+1)−νj (ÂjHt+1)νj + πjMt (r̂mt+1/P̂t+1)−νj (ÂjMt+1)νj
(89)
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r̂Kt+1

P̂t+1

=

Rt+1

Pt+1
−
(
1− δK

)
Rt
Pt
− (1− δK)

(90)

r̂Mt+1

P̂t+1

=

(
1

ξ̂Mt+1

) Rt+1

Pt+1
−
(
1− δM

)
1

ξ̂Mt+2

Rt
Pt
− (1− δM ) 1

ξ̂Mt+1

(91)

with Φj0 =
(wj0/P0)1−γ

(1−γ)vj0
.

It is clear from the previous of equilibrium conditions of the model, expressed in changes, that a very large set
of parameters are no longer present, as described in Proposition 4.

If the economy is initialy in a BGP, which is our assumption in the quantitative application, one can pin-down
the initial value of the endogenous variable Φj0 given some normalizations.42 In particular,

Φj0 = 1− β(1− δ)Γ
(

1− (1− γ)

α

)
µ
−(1−γ)/α
j,j

(
Mjj

Γ (1− 1/α)µ
(1−1/α)
j,j

)1−γ

.

B.1 Counterfactuals

We now describe how to conduct counterfactual experiments using the dynamic hat algebra. For this, we assume

that at time t = 1, a fully unanticipated shock hits the economy in terms of a change in the sequence of TFP or

the price of equipment (i.e. Â or ξ̂). The expressions that need a careful adjustment are the dynamic conditions of

the workers. We denote with a tilde variables in the counterfactual equilibrium. Note that at time t = 0, variables

42It is important to highlight that Proposition 4 is more general, and the assumption of an initial BGP is not
required. However, outside of the BGP, some additional data is required given that normalizations are no longer
valid.
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in both cases are the same, as the shock is only know at t = 1. We then have, for t = 1,

ṽj1
vj0

= Φj0

(
w̃j1/P̃1

wj0/P0

)1−γ

+
(

1− Φj0

)[ J∑
`=1

µj`0
φ`1

(
−ṽ`2
−ṽ`1

) α
1−γ
] 1−γ

α

(92)

µ̃j`1 =

µj`0
φ`1

(
−ṽ`2
−ṽ`1

) α
1−γ

∑J
k=1

µj`0
φk1

(
−ṽ`2
−ṽ`1

) α
1−γ

(93)

φj1 =

(
vj1/v

j
0

ṽj1/v
j
0

) α
1−γ

(94)

H̃`
1 = (1− δ)

J∑
j=1

Mj`
0 Hj

0 + δH̃0,`
1 (95)

M̃j`
1 =

(
µ̃j`1

µj`0

)1− 1
α

Mj`
0 (96)

θ̃`1 = (1− δ)
J∑
j=1

µj`0 θj0 + δθ̃0,`
1 (97)

θ̃0,`
1 =

θ0,`
0

φ`1

(
−ṽ`2
−ṽ`1

) α
1−γ

∑J
k=1

θ0,k
0

φk1

(
−ṽk2
−ṽk1

) α
1−γ

(98)

H̃0,`
1 = H0,`

0

(
θ̃0,`

1

θ0,`
0

)1− 1
α

(99)

Φ̃j1 = Φj0

[
w̃j1/w

j
0

P̃1/P0

]1−γ
ṽj1/v

j
0

(100)
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w̃j1/P̃1

wj0/P0

=

(
ÃjH1

AjH0

) νj
(1+νj)

(
H̃j

1

Hj
0

)− 1
(1+νj)

(
K̃1

K0

) ϕ(ρ−1)
(1−ϕ)(1+νj)

(
C̃j1/P̃1

Cj0/P0

) 1+νj−ρ
1+νj

(
Ỹ1

Y0

) 1−ρϕ
(1+νj)(1−ϕ)

(101)

r̃m1 /P̃1

rm0 /P0
=

(
ÃjM1

AjM0

) νj
(1+νj)

(
M̃ j

1

M j
0

)− 1
(1+νj)

(
K̃1

K0

) ϕ(ρ−1)
(1−ϕ)(1+νj)

(
C̃j1/P̃1

Cj0/P0

) 1+νj−ρ
1+νj

(
Ỹ1

Y0

) 1−ρϕ
(1+νj)(1−ϕ)

(102)

r̃K1 /r
K
0

P̃1/P0

=
Ỹ1/Y0

K1/K0
(103)

Ỹ1

Y0
=

(
K̃1

K0

)ϕ  J∑
j=1

%j0

( ÃjM1
AjM0

M̃ j
1

M j
0

) νj
1+νj

πjM0 +

(
ÃjH1

AjH0

H̃j
1

Hj
0

) νj
1+νj

πjH0


(1+νj)(ρ−1)

νj ρ


(1−ϕ)ρ
ρ−1

(104)

%̃j1 =

%j0

[(
ÃjM1
AjM0

M̃j
1

Mj
0

) νj
1+νj

πjM0 +
(
ÃjH1
AjH0

H̃j1
Hj0

) νj
1+νj

πjH0

] (1+νj)(ρ−1)

νj ρ

∑J
j=1 %

j
0

[(
ÃjM1
AjM0

M̃j
1

Mj
0

) νj
1+νj

πjM0 +
(
ÃjH1
AjH0

H̃j1
Hj0

) νj
1+νj

πjH0

] (1+νj)(ρ−1)

νj ρ

(105)

C̃j1/P̃1

Cj0/P0

=

( r̃M1 /P̃1

rM0 /P0

)−νj (
ÃjM1

AjM0

)νj
πjM0 +

(
w̃j1/P̃1

wj0/P0

)−νj (
ÃjH1

AjH0

)νj
πjH0

−1/νj

(106)

π̃jH1 =
πjH0

(
w̃j1/P̃1

wj0/P0

)−νj ( ÃjH1
AjH0

)νj
πjH0

(
w̃j1/P̃1

wj0/P0

)−νj ( ÃjH1
AjH0

)νj
+ πjM0

(
r̃m1 /P̃1

rm0 /P0

)−νj ( ÃjM1
AjM0

)νj (107)

π̃jM1 =
πjM0

(
r̃m1 /P̃1

rm0 /P0

)−νj ( ÃjM1
AjM0

)νj
πjH0

(
w̃j1/P̃1

wj0/P0

)−νj ( ÃjH1
AjH0

)νj
+ πjM0

(
r̃m1 /P̃1

rm0 /P0

)−νj ( ÃjM1
AjM0

)νj (108)

r̃K1 /P̃1

rK0 /P0
=

R̃1

P̃1
−
(
1− δK

)
R0

P0
− (1− δK)

(109)

r̃M1 /P̃1

rM0 /P0
=

(
1

ξ̃M1 /ξM0

) R̃1

P̃1
−
(
1− δM

)
1

ξ̃M2 /ξ̃M1
R0

P0
− (1− δM ) 1

ξ̃M1 /ξM0

(110)

where, Φj0 =
(wj0/P0)1−γ

(1−γ)vj0
. Note that, the new variable φj1 captures the jump in lifetime utility that occurs at

time t = 1, relative to the baseline, due to the unexpected shock.

86



For all other periods (t ≥ 1) conditions are very similar to the baseline case:

ṽjt+1

ṽjt
= Φ̃jt

(
w̃jt+1/P̃t+1

w̃jt/P̃t

)1−γ

+
(

1− Φ̃jt
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µ̃j`t

(
−ṽ`t+2

−ṽ`t+1

) α
1−γ


1−γ
α

(111)

µ̃j`t+1 =
µ̃j`t

(
−ṽ`t+2

−ṽ`t+1

) α
1−γ

∑J
k=1 µ̃

j`
t

(
−ṽ`t+2

−ṽ`t+1

) α
1−γ

(112)

H̃`
t+1 = (1− δ)

J∑
j=1

M̃j`
t H̃j

t + δH̃0,`
t+1 (113)

M̃j`
t+1 =

(
µ̃j`t+1

µ̃j`t

)1− 1
α

M̃j`
t (114)

θ̃`t+1 = (1− δ)
J∑
j=1

µ̃j`t θ̃
j
t + δθ̃0,`

t+1 (115)
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t+1 =
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t

(
−ṽ`t+2

−ṽ`t+1

) α
1−γ

∑J
k=1 θ̃t

0,k
(
−ṽkt+2

−ṽkt+1

) α
1−γ

(116)

H̃0,`
t+1 = H̃0,`

t

(
θ̃0,`
t+1

θ̃0,`
t

)1− 1
α

(117)

Φ̃jt+1 = Φjt

[
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j
t
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]1−γ
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(118)

w̃jt+1/P̃t+1

w̃jt/P̃t
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(1+νj)
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(
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(119)
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ÃjMt
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(
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t+1
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t

)− 1
(1+νj)

(
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(1−ϕ)(1+νj)

(
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(
Ỹt+1

Ỹt
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(120)
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t
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=

Ỹt+1/Ỹt
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(121)
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j=1 %̃

j
t

[(
ÃjMt+1

ÃjMt
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C̃jt+1/P̃t+1

C̃jt /P̃t
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( r̃Mt+1/P̃t+1

r̃Mt /P̃t
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)νj
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(
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ÃjHt+1

ÃjHt
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π̃jHt

−1/νj

(124)
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)νj
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ÃjMt
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ÃjHt+1
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)νj
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ÃjMt

)νj (126)

r̃Kt+1/P̃t+1

r̃Kt /P̃t
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R̃t+1

P̃t+1
−
(
1− δK

)
R̃t
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(127)
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C Welfare

To characterize welfare in this economy we use the following equilibrium conditions,

vjt =
(wjt/Pt)

1−γ

1− γ
− β Γ

(
1− 1− γ

α

)[ J∑
`=1

(−v`t+1)
α

1−γ (τj`λ`)
α

] 1−γ
α

(129)

µj`t =

[
λ`τj`

(
−v`t+1

) 1
1−γ
]α

∑J
k=1

[
λkτjk

(
−vkt+1

) 1
1−γ
]α (130)

Combining these equations we get,

vjt =
(wjt/Pt)

1−γ

1− γ
+ β Γ

(
1− 1− γ

α

)(
µjjt

)− 1−γ
α

λ1−γ
j τ1−γ

jj vjt+1. (131)

Call Gvt = Γ
(

1− 1−γ
α

)(
µjjt

)− 1−γ
α

λ1−γ
j τ1−γ

jj . We can further expand this as,

vjt =
∞∑
s=0

βs
(

s∏
k=0

Gvt+k−1

)
(wjt+s/Pt+s)

1−γ

1− γ
(132)

Under a counterfactual economy, we have

ṽjt =
∞∑
s=0

βs
(

s∏
k=0

G̃vt+k−1

)
(w̃jt+s/P̃t+s)

1−γ

1− γ
(133)

Define δj the consumption equivalent measure for the counterfactual economy, such that

ṽjt =
∞∑
s=0

βs
(

s∏
k=0

Gvt+k−1

)
(δjw

j
t+s/Pt+s)

1−γ

1− γ
(134)

88



Then, δj =
(
ṽjt /v

j
t

)1/(1−γ)
.

D Extensions

In this appendix, we show how to extend our baseline framework along various dimensions that are both quantita-
tively and conceptually relevant.

D.1 Heterogeneous Workers

In addition to their human capital levels, h, and their current occupations, j, workers are heterogenous along two
other dimensions. First, workers belong to different groups, indexed by e = 1, .., E, defined according to observable
characteristics such as the worker’s schooling attainment, gender, and possibly race. These worker characteristics
are fixed over time. In addition, workers differ in their age, which also governs the horizon for their labor market
participation. For tractability, we consider workers that fall into two possible age groups: young and old. These
age groups are denoted a ∈ {y, o}. We assume a simple form of stochastic aging, i.e. time invariant transitions
across age groups: Every period, each a young worker becomes an old worker with probability 0 < π ≤ 1, and with
probability 1 − π stays a young worker. Finally, young workers die with probability 0 < δy ≤ 1 every period and
old workers die with probability 0 < δo ≤ 1.

In each period, new young workers enter the labor markets. The mass of “newborn” workers is described by a
positive measure, θe,nb,jt , that defines how they are distributed across fixed characteristics e, and initial occupations
j. It is convenient to assume that newborns may be hit by the aging shock upon entry, thus some of them will
start the period as old.43 For newborn workers, the distribution of human capital within their group is φe,nb,jt (h).
Similarly, at any point in time, the mass of workers of different characteristics in the economy and the distribution
of human capital within each of these groups are θt (e, a, j) and φe,a,jt (h), respectively.

All workers take as given the vector of unitary wages w = [w (1) , w (2) , ...w (J)] for all the J occupations.
The individual characteristics e and the age a of the worker determine the pecuniary and non-pecuniary costs,
τe,aj,` and χe,aj,` , of switching occupations, as well as the parameters that govern the probabilities for labor market

opportunities λe,a` for all occupations. Aside from these forms of heterogeneity, the structure of the dynamic choices
of workers is exactly the same as in the basic model, as we explain in detail now.

The value function for young, and old workers depends on their type e, and are respectively given by:

V e,y (j, h, ε) =
[w(j)h]

1−γ

1− γ
+ βy max

`

{
χe,yj,` πEε′|y,e

[
V e,o

[
`, hτe,yj,` ε`, ε

′
]]

+ χe,yj,` (1− π)Eε′|y,e

[
V e,y

[
`, hτe,yj,` ε (`) , ε′

]]}
,

V e,o (j, h, ε) =
[w(j)h]

1−γ

1− γ
+ βo max

`

{
χe,oj,`Eε′|o,e

[
V e,o

[
`, hτe,oj,` ε`, ε

′
]]}

,

where Eε′|a,e denotes the expectation with respect to labor market opportunities ε′, conditional on the age and
type of workers, and βy = β (1− δy) and βo = β (1− δo) are the effective discount factors which take into account
the death probability.

Following the same steps as in the basic model, we can define by ve,y (j), ve,o (j) as the expectation of the
normalized (h = 1) value of a worker in group e attached to occupation j. These values are given by the Bellman
equations

ve,y (j) =
[w(j)]

1−γ

1− γ
+ βyEε|y,e max

`

{
[πve,o(`) + (1− π) ve,y(`)] χe,yj,` [τe,yj,` ε`]

1−γ
}

,

ve,o (j) =
[w(j)]

1−γ

1− γ
+ βoEε|o,e max

`

{
ve,o(`)χe,oj,` [τe,yj,` ε`]

1−γ
}

,

Our quantitative model imposes the assumption that the vector of market opportunities ε for all workers is

43 As we discuss next, this assumption is convenient since all transition matrices µ and M will have all elements strictly positive

and the version of the Perron-Frobenius theorem for positive matrices holds. Nonetheless, we can relax this assumption, in which case

these matrices will have some elements equal to zero. We would need to check that these matrices are irreducible and apply the version

of the theorem for this case.
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distributed according to a multidimensional extreme value distribution, which we allow to vary across the type e
and age a of the worker. Specifically, we assume that each ε` is independently distributed Frechet with age- and
type-dependent scale parameters λe,a` > 0 but common curvature α > 1. The expected labor market growth factors
for a worker of group e and age a are

Φe,a (j) ≡ Γ

(
1− 1− γ

α

)[ J∑
`=1

(χe,aj,` )
α

1−γ

(
τe,aj` λ

e,a
`

)α]
,

and define Φ̄e,a ≡ maxj {Φe,a (j)} the highest of those growth factors for each of the age and type groups. Finally,
redefine the bounds on flow utilities u and ū to be the uniform bounds across all a and e. Then, under the conditions
that βaΦ̄e,a < 1 for all e, a, we can find finite lower and upper bounds v, v̄ that apply to all the normalized expected
values ve,a (j).

The following corollary extends the characterization of the individual worker’s problem of Theorem 3 to be
applied in our quantitative model.

Corollary 1 Individual Problems, Extended Model. Assume that the shocks ε = [ε1, ...ε`, ...εJ ] are distributed
Frechet with shape parameter α > 1 and scale parameters λe,a` > 0 for all ages a and types e. Assume also that w
is strictly positive and that βaΦ̄e,a < 1 for all e, a. Then: (i) If 0 ≤ γ < 1, the expected values v (j) for j = 1, ..., J
solve the fixed point problem

ve,y (j) =
(wj)

1−γ

1− γ
+ βyΓ

(
1− 1− γ

α

)[ J∑
`=1

[πve,o (`) + (1− π) ve,y (`)]
α

1−γ (χe,yj,` )
α

1−γ

(
τe,yj` λ

e,y
`

)α] 1−γ
α

.

ve,o (j) =
(wj)

1−γ

1− γ
+ βoΓ

(
1− 1− γ

α

)[ J∑
`=1

[ve,o (`)]
α

1−γ (χe,oj,` )
α

1−γ

(
τe,oj` λ

e,o
`

)α] 1−γ
α

A solution ve,a ∈ [0, v̄]
J

for these BE exists and is unique. Moreover, the proportion of workers switching from
occupation j to occupation ` is given by:

µe,yj` =
[πve,o (`) + (1− π) ve,y (`)]

α
1−γ (χe,yj,` )

α
1−γ

(
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α
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α
1−γ

(
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α

1−γ (χe,oj,` )
α

1−γ

(
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k=1 [ve,o (k)]

α
1−γ (χe,oj,k)

α
1−γ

(
τe,ojk λ

e,o
k

)α .

(ii) If γ > 1 the expected values v (j) for j = 1, ..., J , solve the fixed point problem

ve,y (j) =
(wj)

1−γ

1− γ
− βyΓ

(
1− 1− γ

α

)[ J∑
`=1

[π(−ve,o (`)) + (1− π) (−ve,y (`))]
α
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α
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(
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α
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α
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[(−ve,o (`))]
α
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α
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(
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e,o
`

)α] 1−γ
α

A solution v ∈ [v, 0]
J

for this BE exists and is unique. Moreover, the proportion of workers that switch from
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occupation j to occupation ` is given by:

µe,yj` =
[π(−ve,o (`)) + (1− π) (−ve,y (`))]

α
1−γ (χe,yj,` )

α
1−γ

(
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`

)α
∑J
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α
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α
1−γ

(
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)α
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α

1−γ (χe,oj,` )
α
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(
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e,o
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)α
∑J
k=1 [(−ve,o (k))]

α
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e,o
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